Skip to main content
Log in

A novel approach for preparation of “cage-like” multihollow polymer microspheres through sulfonated polystyrene particles

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

A new and effective process has been developed for fabrication of novel cage-like multihollow polymer particles by using sulfonated polystyrene (SP) particles as the templates, with heptane as the phase separation agent, in an ethanol/water medium. The ratio of water/ethanol and the heating temperature play important roles in the formation of these multihollow particles. It was found that the cage-like polymer particles could be obtained when the ratio of ethanol/water is 5:5 (w/w), with a temperature above 50 °C. After a detailed study, the formation mechanism was proposed based on an SP swollen (ethanol and heptane penetrating process) and phase separation process. This new method for fabricating the cage-like multihollow polymer particles has a great meaning not only on confirming the formation mechanism, but also on providing an effective way to prepare the special hollow core/porous shell polymer particles, which could have wide range of potential applications, such as catalysts, sensors, and drug release.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zhao Y, Jiang L (2009) Adv Mater 21(36):3621–3638

    Article  CAS  Google Scholar 

  2. Lou XW, Archer LA, Yang ZC (2008) Adv Mater 20(21):3987–4019

    Article  CAS  Google Scholar 

  3. Mora-Huertas CE, Fessi H, Elaissari A (2010) Int J Pharm 385(1–2):113–142

    Article  CAS  Google Scholar 

  4. Sokolova V, Epple M (2008) Angew Chem Int Ed 47(8):1382–1395

    Article  CAS  Google Scholar 

  5. Ikeda S, Ishino S, Harada T, Okamoto N, Sakata T, Mori H, Kuwabata S, Torimoto T, Matsumura M (2006) Angew Chem Int Ed 45(42):7063–7066

    Article  CAS  Google Scholar 

  6. Chen J, Saeki F, Wiley BJ, Cang H, Cobb MJ, Li ZY, Au L, Zhang H, Kimmey MB, Li XD, Xia YN (2005) Nano Lett 5(3):473–477

    Article  CAS  Google Scholar 

  7. Arico AS, Bruce P, Scrosati B, Tarascon JM, Van Schalkwijk W (2005) Nat Mater 4(5):366–377

    Article  CAS  Google Scholar 

  8. Tarascon JM, Armand M (2001) Nature 414(6861):359–367

    Article  CAS  Google Scholar 

  9. Kost J, Langer R (2001) Adv Drug Deliv Rev 46(1–3):125–148

    Article  CAS  Google Scholar 

  10. Zhong ZY, Yin YD, Gates B, Xia YN (2000) Adv Mater 12(3):206–209

    Article  CAS  Google Scholar 

  11. Meier W (2000) Chem Soc Rev 29(5):295–303

    Article  CAS  Google Scholar 

  12. Zhang JA, Yang JJ, Wu QY, Wu MY, Liu NN, Jin ZL, Wang YF (2010) Macromolecules 43(3):1188–1190

    Article  CAS  Google Scholar 

  13. Nakashima T, Kimizuka N (2003) J Am Chem Soc 125(21):6386–6387

    Article  CAS  Google Scholar 

  14. Li TT, Liu HR, Zeng L, Yang S, Li ZC, Zhang JD, Zhou XT (2011) J Mater Chem 21(34):12865–12872

    Article  CAS  Google Scholar 

  15. Wu T, Ge ZS, Liu SY (2011) Chem Mater 23(9):2370–2380

    Article  CAS  Google Scholar 

  16. Tanaka T, Komatsu Y, Fujibayashi T, Minami H, Okubo M (2010) Langmuir 26(6):3848–3853

    Article  CAS  Google Scholar 

  17. Okada M, Matoba T, Okubo M (2003) Colloid Polym Sci 282(2):193–197

    Article  CAS  Google Scholar 

  18. Kobayashi H, Suzuki T, Moritaka M, Miyanaga E, Okubo M (2009) Colloid Polymer Sci 287(3):251–257

    Article  CAS  Google Scholar 

  19. Kobayashi H, Miyanaga E, Okubo M (2007) Langmuir 23(17):8703–8708

    Article  CAS  Google Scholar 

  20. Okubo M, Mukai T, Minami H, Fujii S (2000) Colloid Polymer Sci 278(3):275–279

    Article  CAS  Google Scholar 

  21. Lee EM, Lee HW, Park JH, Han YA, Ji BC, Oh WT, Deng YL, Yeum JH (2008) Colloid Polymer Sci 286(12):1379–1385

    Article  CAS  Google Scholar 

  22. Hosein ID, Liddell CM (2007) Langmuir 23(5):2892–2897

    Article  CAS  Google Scholar 

  23. Wang P, Chen D, Tang FQ (2006) Langmuir 22(10):4832–4835

    Article  CAS  Google Scholar 

  24. Kim TH, Lee KH, Kwon YK (2006) J Colloid Interface Sci 304(2):370–377

    Article  CAS  Google Scholar 

  25. Deng ZW, Chen M, Zhou SX, You B, Wu LM (2006) Langmuir 22(14):6403–6407

    Article  CAS  Google Scholar 

  26. Cheng XJ, Chen M, Wu LM, Gu GX (2006) Langmuir 22(8):3858–3863

    Article  CAS  Google Scholar 

  27. Chen M, Wu LM, Zhou SX, You B (2006) Adv Mater 18(6):801–806

    Article  CAS  Google Scholar 

  28. Lu Y, McLellan J, Xia YN (2004) Langmuir 20(8):3464–3470

    Article  CAS  Google Scholar 

  29. Graf C, Vossen DLJ, Imhof A, van Blaaderen A (2003) Langmuir 19(17):6693–6700

    Article  CAS  Google Scholar 

  30. Cornelissen JJLM, Connor EF, Kim HC, Lee VY, Magibitang T, Rice PM, Volksen W, Sundberg LK, Miller RD (2003) Chem Commun 8:1010–1011

    Article  Google Scholar 

  31. Velikov KP, van Blaaderen A (2001) Langmuir 17(16):4779–4786

    Article  CAS  Google Scholar 

  32. Imhof A (2001) Langmuir 17(12):3579–3585

    Article  CAS  Google Scholar 

  33. Yang M, Ma J, Zhang CL, Yang ZZ, Lu YF (2005) Angew Chem Int Ed 44(41):6727–6730

    Article  CAS  Google Scholar 

  34. Yang ZZ, Niu ZW, Lu YF, Hu ZB, Han CC (2003) Angew Chem Int Ed 42(17):1943–1945

    Article  CAS  Google Scholar 

  35. Li HM, Wang MZ, Song LY, Ge XW (2008) Colloid Polymer Sci 286(6–7):819–825

    Article  CAS  Google Scholar 

  36. He XD, Ge XW, Liu HR, Wang MZ, Zhang ZC (2005) Chem Mater 17(24):5891–5892

    Article  CAS  Google Scholar 

  37. Ge XP, Wang MZ, Wang H, Yuan Q, Ge XW, Liu HR, Tang T (2010) Langmuir 26(3):1635–1641

    Article  CAS  Google Scholar 

  38. Yuan Q, Yang LB, Wang MZ, Wang H, Ge XP, Ge XW (2009) Langmuir 25(5):2729–2735

    Article  CAS  Google Scholar 

  39. Yuan QC, Cayre OJ, Fujii S, Armes SP, Williams RA, Biggs S (2010) Langmuir 26(23):18408–18414

    Article  CAS  Google Scholar 

  40. Fujii S, Matsuzawa S, Nakamura Y, Ohtaka A, Teratani T, Akamatsu K, Tsuruoka T, Nawafune H (2010) Langmuir 26(9):6230–6239

    Article  CAS  Google Scholar 

  41. Matsuda H, Ochi K (2004) Fluid Phase Equilib 224(1):31–37

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (nos. 51073146, 51103143, 51103039, and 51173175) and Program for Outstanding Young Teachers of ECUST (no. YK0157134).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xuewu Ge or Mozhen Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ge, X., Ge, X., Wang, M. et al. A novel approach for preparation of “cage-like” multihollow polymer microspheres through sulfonated polystyrene particles. Colloid Polym Sci 290, 1749–1757 (2012). https://doi.org/10.1007/s00396-012-2709-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-012-2709-8

Keywords

Navigation