Skip to main content
Log in

Thermal analyses of poly(N-isopropylacrylamide) in aqueous solutions and in nanocomposite gels

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The coil-to-globule transition of poly(N-isopropylacrylamide) (PNIPA) prepared by free-radical redox polymerization in aqueous solutions and its nanocomposite (NC) gels were investigated by differential scanning calorimetery. The lower critical solution temperatures (LCST) of aqueous solutions of PNIPA of different molecular weights were not significantly affected by molecular weight (M w: 0.19 × 106−4.29 × 106 g × mol−1) or polymer concentration (1−10 wt%), although the enthalpy of transition increased with molecular weight, at M w (<1.2 × 106 g × mol−1). The glass-transition temperature of PNIPA in the dried state also remained constant (138 °C), regardless of molecular weight. On the other hand, the enthalpy of the coil-to-globule transition of PNIPA in NC gels consisting of a PNIPA/clay network decreased with increasing clay concentration (C clay), while the onset temperature (≡LCST) was almost constant, regardless of C clay. The PNIPA chains in NC gels could be classified into the following three types: P-1, which exhibits a normal LCST transition, similar to that of linear PNIPA; P-2, exhibiting restricted transition at higher temperatures as a result of interactions with the clay; and P-3, which does not undergo that transition because of stronger restrictions. It was found that the proportion of P-3 increases with increasing C clay. However, some P-1 and P-2 was still observed, even in NC gels with high C clay. That the transition to the hydrophobic globular state was restricted by interactions with the clay was confirmed by measurements on PNIPA after removal of the clay from NC gels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig.3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. There is some ambiguity about the molecular weight of PNIPA prepared in aqueous solution. In Otake’s paper [36], PNIPA was prepared using the following conditions: Free-radical redox polymerization at 0 °C, [NIPA] = 0.7 M, KPS = 0.15 mM, TEMED = 2 mL for 1 l H2O. Based on our results [34], the conditions used there should result in a partially self-crosslinked gel, the molecular weight of which cannot be precisely determined by GPC

References

  1. Schmaljohann D (2006) Thermo-and pH-responsive polymers in drug delivery. Adv Drug Delivery Rev 58:1655–1670

    Article  CAS  Google Scholar 

  2. Aoki T, Kawashima M, Katono H, Sanui K, Ogata N, Okano T, Sakurai Y (1994) Temperature-responsive interpenetrating polymer networks constructed with poly(acrylic acid) and poly(N, N-dimethylacrylamide). Macromolecules 27:947–952

    Article  CAS  Google Scholar 

  3. Schild HG (1992) Poly(N-isopropylacrylamide): experiment, theory and application. Prog Polym Sci 17:163–249

    Article  CAS  Google Scholar 

  4. Alarcon AH, Pennadam S, Alexander C (2005) Stimuli responsive polymers for biomedical applications. Chem Soc Rev 34:276–285

    Article  CAS  Google Scholar 

  5. Cao Z, Ziener U, Landfester K (2010) Synthesis of narrowly size-distributed thermosensitive poly(N-isopropylacrylamide) nanocapsules in inverse miniemulsion. Macromolecules 43:6353–6360

    Article  CAS  Google Scholar 

  6. Satokawa Y, Shikata T, Tanaka F, Qiu X, Winnik FM (2009) Hydration and dynamic behavior of a cyclic poly(N-isopropylacrylamide) in aqueous solution: effects of the polymer chain topology. Macromolecules 42:1400–1403

    Article  CAS  Google Scholar 

  7. Hu Y, Fujiwara H, Sasaki K, Tsujii K (2005) Rapid swelling/collapsing behavior of thermoresponsive poly(N-isopropylacrylamide) gel containing poly(2-(methacryloyloxy)decyl phosphate) surfactant. Angew Chem Int Ed 44:1951–1954

    Article  Google Scholar 

  8. Kikuchi A, Okano T (2002) Pulsatile drug release control using hydrogels. Adv Drug Deliver Rev 54:53–77

    Article  CAS  Google Scholar 

  9. Tsuji S, Kawaguchi H (2006) Effect of graft chain length and structure design on temperature-sensitive hairy particles. Macromolecules 39:4338–4344

    Article  CAS  Google Scholar 

  10. Akashi R, Tsutsui H, Komura A (2002) Polymer gel light-modulation materials imitating pigment cells. Adv Mater 14:1808–1811

    Article  CAS  Google Scholar 

  11. Haraguchi K, Takehisa T (2002) Nanocomposite hydrogels: a unique organic-inorganic network structure with extraordinary mechanical, optical, and swelling/de-swelling properties. Adv Mater 14:1120–1124

    Article  CAS  Google Scholar 

  12. Haraguchi K, Takehisa T, Fan S (2002) Effects of clay content on the properties of nanocomposite hydrogels composed of poly(N-isopropylacrylamide) and clay. Macromolecules 35:10162–10171

    Article  CAS  Google Scholar 

  13. Haraguchi K, Farnworth R, Ohbayashi A, Takehisa T (2003) Compositional effect on mechanical properties of nanocomposite hydrogels composed of poly(N, N-dimethylacrylamide) and clay. Macromolecules 36:5732–5741

    Article  CAS  Google Scholar 

  14. Haraguchi K, Li HJ (2006) Mechanical properties and structure of polymer-clay nanocomposite gels with high clay content. Macromolecules 39:1898–1905

    Article  CAS  Google Scholar 

  15. Haraguchi K (2007) Nanocomposite hydrogels. Curr Opin Solid State Mat Sci 11:47–54

    Article  CAS  Google Scholar 

  16. Haraguchi K (2011) Synthesis and properties of soft nanocomposite materials with novel organic/inorganic network structures. Polym J 43:223–241

    Article  CAS  Google Scholar 

  17. Haraguchi K, Li HJ (2005) Control of the coil-to-globule transition and ultrahigh mechanical properties of PNIPA in nanocomposite hydrogels. Angew Chem Int Ed 44:6500–6504

    Article  CAS  Google Scholar 

  18. Haraguchi K, Li HJ, Song L, Murata K (2007) Tunable optical and swelling/deswelling properties associated with control of the coil-to-globule transition of poly(N-isopropylacrylamide) in polymer-clay nanocomposite gels. Macromolecules 40:6973–6980

    Article  CAS  Google Scholar 

  19. Haraguchi K, Takehisa T, Ebato M (2006) Control of cell cultivation and cell sheet detachment on the surface of polymer/clay nanocomposite hydrogels. Biomacromolecules 7:3267–3275

    Article  CAS  Google Scholar 

  20. Haraguchi K, Takada T (2010) Synthesis characteristics of nanocomposite gels prepared by in situ photopolymerization in an aqueous system. Macromolecules 43:4294–4299

    Article  CAS  Google Scholar 

  21. Scarpa JS, Mueller DD, Klotz IM (1967) Slow hydrogen-deuterium exchange in a non-α-helical polyamide. J Am Chem Soc 89:6024–6030

    Article  CAS  Google Scholar 

  22. Heskins M, Guillet JE (1968) Solution properties of poly(N-isopropylacrylamide). J Macromol Sci Chem 2:1441–1455

    Article  CAS  Google Scholar 

  23. Fujishige S, Kubota K, Ando I (1989) Phase transition of aqueous solution of poly(N-isopropylacrylamide) and poly(N-isopropylmethacrylamide). J Phys Chem 93:3311–3313

    Article  CAS  Google Scholar 

  24. Schild HG, Tirrell DA (1990) Microcalorimetric detection of lower critical solution temperature in aqueous polymer solution. J Phys Chem 94:4352–4356

    Article  CAS  Google Scholar 

  25. Tiktopulo EI, Uversky VN, Lushchik VB, Klenin SI, Bychkova VE, Ptitsyn OB (1995) “Domain” coil-globule transition in homopolymers. Macromolecules 28:7519–7524

    Article  CAS  Google Scholar 

  26. Tong Z, Zeng F, Zheng X, Sato T (1999) Inverse molecular weight dependence of cloud points for aqueous poly(N-isopropylacrylamide) solutions. Macromolecules 32:4488–4490

    Article  CAS  Google Scholar 

  27. Furyk S, Zhang Y, Ortiz-Acosta D, Cremer PS, Bergbreiter DE (2006) Effects of end group polarity and molecular weight on the lower critical solution temperature of poly(N-isopropylacrylamide). J Polym Sci Part A 44:1492–1501

    Article  CAS  Google Scholar 

  28. Ray B, Okamoto Y, Kamigaito M, Sawamoto M, Seno K, Kanaoka S, Aoshima S (2005) Effect of tacticity of poly(N-isopropylacrylamide) on the phase separation temperature of its aqueous solutions. Polym J 37:234–237

    Article  CAS  Google Scholar 

  29. Kawaguchi T, Kojima Y, Osa M, Yoshizaki T (2008) Cloud points in aqueous poly(N-isopropylacrylamide) solutions. Polym J 40:455–459

    Article  CAS  Google Scholar 

  30. Zhang Y, Furyk S, Sagle LB, Cho Y, Bergbreiter DE, Cremer PS (2007) Effects of hofmeister anions on the LCST of PNIPAM as a function of molecular weight. J Phys Chem C 111:8916–8924

    Article  CAS  Google Scholar 

  31. Meewes M, Ricka J, De Silva M, Nyffenegger R, Binkert T (1991) Coil-globule transition of poly(N-isopropylacrylamide): a study of surfactant effects by light scattering. Macromolecules 24:5811–5816

    Article  CAS  Google Scholar 

  32. Boutris C, Chatzi EG, Kiparissides C (1997) Characterization of the LCST behaviour of aqueous poly(N-isopropylacrylamide) solutions by thermal and cloud point techniques. Polymer 38:2567–2570

    Article  CAS  Google Scholar 

  33. Shibayama M, Suetoh Y, Nomura S (1996) Structure relaxation of hydrophobically aggregated poly(N-isopropylacrylamide) in water. Macromolecules 29:6966–6968

    Article  CAS  Google Scholar 

  34. Xu Y, Li G, Haraguchi K (2010) Gel formation and molecular characteristics of poly(N-isopropylacrylamide) prepared by free-radical redox polymerization in aqueous solution. Macromol Chem Phys 211:977–987

    Article  CAS  Google Scholar 

  35. Haraguchi K, Xu Y, Li G (2010) Molecular characteristics of poly(N-isopropylacrylamide) separated from nanocomposite gels by removal of clay from the polymer/clay network. Macromol Rapid Commun 31:718–772

    Article  CAS  Google Scholar 

  36. Otake K, Inomata H, Konno M, Saito S (1990) Thermal analysis of the volume phase transition with N-isopropylacrylamide gels. Macromolecules 23:283–289

    Article  CAS  Google Scholar 

  37. Miyazaki S, Endo H, Karino T, Haraguchi K, Shibayama M (2007) Gelation mechanism of poly(N-isopropylacrylamide)-clay nanocomposite gels. Macromolecules 40:4287–4295

    Article  CAS  Google Scholar 

  38. Fox TG, Flory PJ (1950) Second-order transition temperatures and related properties of polystyrene. I. Influence of molecular weight. J Appl Phy 21:581–591

    Article  CAS  Google Scholar 

  39. Fox TG, Loshaek S (1955) Influence of molecular weight and degree of crosslinking on the specific volume and glass temperature of polymers. J Polym Sci XV:371-390

    Google Scholar 

  40. Pezzin G, Zilio-Grandi F, Sanmartin P (1970) The dependence of the glass transition temperature on molecular weight for polyvinylchloride. Eur Polym J 6:1053–1061

    Article  CAS  Google Scholar 

  41. O’Driscoll K, Sanayei RA (1991) Chain-length dependence of the glass transition temperature. Macromolecules 24:4479–4480

    Article  Google Scholar 

  42. Cowie JMG, Toporowski PM (1968) The dependence of glass temperature on molecular weight for poly α-methyl styrene. Eur Polym J 4:621–625

    Article  CAS  Google Scholar 

  43. Clarson SJ, Semlyen JA, Dodgson K (1991) Cyclic polysiloxanes: 4. Glass transition temperature of poly(phenylmethylsiloxanes). Polymer 32:2823–2827

    Article  CAS  Google Scholar 

  44. Faucher JA, Koleske JV, Santee ER, Stratta JJ, Wilson CW (1966) Glass transition of ethylene oxide polymers. J Appl Phy 37:3962–3964

    Article  CAS  Google Scholar 

  45. Johari GP, Hallbrucher A, Mayer E (1988) Calorimetric relaxation and glass transition in poly(propylene glycols) and its monomer. J Polym Sci Part B 26:1923–1930

    Article  CAS  Google Scholar 

  46. Faucher JA (1965) The dependence of glass transition temperature on molecular weight for poly(propylene oxide) and poly(butylene oxide). Polym Lett 3:143–145

    Article  CAS  Google Scholar 

  47. Lewis OG (1968) Physical constants of linear homopolymers. Springer, Berlin

    Book  Google Scholar 

  48. Smidsrфd O, Guillet JE (1969) Study on polymer-solution interactions by gas chromatography. Macromolecules 2:272–277

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by the Ministry of Education, Science, Sports and Culture of Japan (grant-in-aid 23350117).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazutoshi Haraguchi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haraguchi, K., Xu, Y. Thermal analyses of poly(N-isopropylacrylamide) in aqueous solutions and in nanocomposite gels. Colloid Polym Sci 290, 1627–1636 (2012). https://doi.org/10.1007/s00396-012-2694-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-012-2694-y

Keywords

Navigation