Skip to main content
Log in

Novel polymer nanocomposite hydrogel with natural clay nanotubes

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Polymer nanocomposite gels (NC gels), a kind of typical soft materials, can be synthesized through free-radical polymerization of water-soluble monomers in the presence of nanoclay in aqueous system. Here, novel natural tube-like nanoparticles, halloysite nanotubes (HNTs), are firstly used as multifunctional cross-linkers for polyacrylamide (PAAm) to form a new type of organic/inorganic hybrid hydrogels. Significant improvements in mechanical properties of the PAAm-HNTs NC gels are found by the addition of HNTs as shown by the static mechanical testing and dynamic viscoelasticity measurement. HNTs are uniformly dispersed in the NC gels from the morphological result. HNTs can be intercalated by PAAm chains as observed by the X-ray diffraction result. Hydrogen bonding interactions between HNTs and PAAm are confirmed by the infrared spectroscopy and X-ray photoelectron spectroscopy. The maximum equilibrium degree of swelling (EDS) for the NC gel is 4000% and the EDS decreases with the concentration of clay nanotubes. The present work provides a novel routine for preparing NC gels using “green” one-dimensional nanoparticle. The prepared NC gels have promising application in biomedical areas due to the superior mechanical properties of the gels and good biocompatibility of HNTs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Haraguchi K, Takehisa T (2002) Adv Mater 14:1120

    Article  CAS  Google Scholar 

  2. Haraguchi K (2011) Polym J 43:223

    Article  CAS  Google Scholar 

  3. Haraguchi K, Takehisa T, Fan S (2002) Macromolecules 35:10162

    Article  CAS  Google Scholar 

  4. Haraguchi K, Ebato M, Takehisa T (2006) Adv Mater 18:2250

    Article  CAS  Google Scholar 

  5. Zhu MF, Liu Y, Sun B, Zhang W, Liu XL, Yu H, Zhang Y, Kuckling D, Adler HJP (2006) Macromol Rapid Commun 27:1023

    Article  CAS  Google Scholar 

  6. Xiong LJ, Hu XB, Liu XX, Tong Z (2008) Polymer 49:5064

    Article  CAS  Google Scholar 

  7. Haraguchi K, Li HJ, Matsuda K, Takehisa T, Elliott E (2005) Macromolecules 38:3482

    Article  CAS  Google Scholar 

  8. Haraguchi K, Li HJ (2006) Macromolecules 39:1898

    Article  CAS  Google Scholar 

  9. Liu Y, Zhu MF, Liu XL, Zhang W, Sun B, Chen Y, Adler HJP (2006) Polym J 47:1

    Article  CAS  Google Scholar 

  10. Joussein E, Petit S, Churchman J, Theng B, Righi D, Delvaux B (2005) Clay Minerals 40:383

    Article  CAS  Google Scholar 

  11. Levis SR, Deasy PB (2002) Int J Pharm 243:125

    Article  CAS  Google Scholar 

  12. Du ML, Guo BC, Jia DM (2010) Polym Int 59:574

    CAS  Google Scholar 

  13. Lvov YM, Shchukin DG, Mohwald H, Price RR (2008) ACS Nano 2:814

    Article  CAS  Google Scholar 

  14. Liu M, Guo B, Du M, Jia D (2007) Appl Phys A: Mater Sci Process 88:391

    Article  CAS  Google Scholar 

  15. Zhou WY, Guo BC, Liu MX, Liao RJ, Rabie ABM, Jia DM (2010) J Biomed Mater Res A 93A:1574

    CAS  Google Scholar 

  16. Hughes AD, King MR (2010) Langmuir 26:12155

    Article  CAS  Google Scholar 

  17. Vergaro V, Abdullayev E, Lvov YM, Zeitoun A, Cingolani R, Rinaldi R, Leporatti S (2010) Biomacromolecules 11:820

    Article  CAS  Google Scholar 

  18. Abdullayev E, Lvov Y (2010) J Mater Chem 20:6681

    Article  CAS  Google Scholar 

  19. Shchukin DG, Sukhorukov GB, Price RR, Lvov YM (2005) Small 1:510

    Article  CAS  Google Scholar 

  20. Wagner CD, Riggs WM, Davis LE, Moulder JF, Muilenberg GE (1979) Handbook of X-Ray Photoelectron Spectroscopy. Perkin-Elmer Corporation, Physical Electronics Division, Eden Prairie, Minnesota, USA

  21. Podsiadlo P, Kaushik AK, Arruda EM, Waas AM, Shim BS, Xu JD, Nandivada H, Pumplin BG, Lahann J, Ramamoorthy A, Kotov NA (2007) Science 318:80

    Article  CAS  Google Scholar 

  22. Madejova J (2003) Vib Spectrosc 31:1

    Article  CAS  Google Scholar 

  23. Simons WW (1978) The Sadtler handbook of infrared spectra. Sadtler Research Laboratories, Informatics Division, Philadelphia, USA

  24. Coleman MM, Skrovanek DJ, Hu J, Painter PC (1988) Macromolecules 21:59

    Article  CAS  Google Scholar 

  25. Guo LH, Sato H, Hashimoto T, Ozaki Y (2010) Macromolecules 43:3897

    Google Scholar 

  26. Zhang Y, Tan KL, Liaw BY, Liaw DJ, Kang ET (2000) Thin Solid Films 374:70

    Article  CAS  Google Scholar 

  27. Misra M, Raja KS (2010) Ordered titanium dioxide nanotubular arrays as photoanodes for hydrogen generation. In: Vayssieres L (ed) On solar hydrogen nanotechnology. John Wiley & Sons (Asia) Pte Ltd, Singapore, pp 265–290

  28. Potschke P, Fornes TD, Paul DR (2002) Polymer 43:3247

    Article  CAS  Google Scholar 

  29. Fu PJ, Xu KL, Song HZ, Chen GM, Yang JP, Niu YH (2010) J Mater Chem 20:3869

    Article  CAS  Google Scholar 

  30. Krishnamoorti R, Giannelis EP (1997) Macromolecules 30:4097

    Article  CAS  Google Scholar 

  31. Liu MX, Guo BC, Du ML, Cai XJ, Jia DM (2007) Nanotechnology 18:455703

    Article  Google Scholar 

  32. Miyazaki S, Endo H, Karino T, Haraguchi K, Shibayama M (2007) Macromolecules 40:4287

    Google Scholar 

  33. Ye YP, Chen HB, Wu JS, Ye L (2007) Polymer 48:6426

    Article  CAS  Google Scholar 

  34. Rooj S, Das A, Thakur V, Mahaling RN, Bhowmick AK, Heinrich G (2010) Mater Des 31:2151

    Article  CAS  Google Scholar 

  35. Luca V, Thomson S (2000) J Mater Chem 10:2121

    Article  CAS  Google Scholar 

  36. Frost RL, Kristof J (1997) Clay Clay Miner 45:551

    Article  CAS  Google Scholar 

  37. Pasbakhsh P, Ismail H, Ahmad Fauzi MN, Bakar AA (2009) Polym Test 28:548

    Article  CAS  Google Scholar 

  38. Zhang W, Liu Y, Zhu MF, Zhang Y, Liu XL, Yu H, Jiang YM, Chen YM, Kuckling D, Adler HJP (2006) J Polym Sci A Polym Chem 44:6640

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful for the financial support provided by the National Natural Science Foundation of China with grant number of 51173070, the Key Laboratory of Rubber-plastics (Qingdao University of Science and Technology), Ministry of Education, and the Key Laboratory of High Performance and Functional Polymeric Materials (South China University of Technology), Guangdong province, PR of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changren Zhou.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Appearance of PAAm-HNTs NC gels before (a), during (b), and after (c) tensile testing (DOC 1173 kb)

Fig. S2

Appearance of PAAm-HNTs NC gels with 20% gel content (DOC 8965 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, M., Li, W., Rong, J. et al. Novel polymer nanocomposite hydrogel with natural clay nanotubes. Colloid Polym Sci 290, 895–905 (2012). https://doi.org/10.1007/s00396-012-2588-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-012-2588-z

Keywords

Navigation