Skip to main content
Log in

The investigation of molecular affinity involved in poly(ethylene glycol)-based polymer-dispersed liquid crystal display

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Acrylic polyethylene glycol(PEG)-based polymer-dispersed liquid crystal (PDLC) films have been fabricated to investigate the effect of intermolecular interactions on PDLC performance. For this purpose, the amphiphilic liquid crystal and polymers are selected as PDLC composite materials. The acrylic PEG contents are varied from 0 to 66.66 mol wt.% in order to understand the effects of different levels of additions on the microstructure and electro-optical properties of the PDLC films. For this intention, polarized optical microscopy and UV–vis spectroscopy are used. The extent of phase separation and anchoring energy are also examined using Fourier transform infrared (FTIR) spectroscopy and contact angle measurements in consequence of acrylic PEG addition. The contrast ratio, threshold voltage, as well as saturation voltage, tended to increase with the addition of acrylic PEG. The molecular affinity involved in the polymer matrix and LC molecules affected the phase separation which is responsible for the formation of domain size; this accordingly changed the electro-optical properties of PDLC film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Drzaic PS (1995) Liquid crystal dispersions. World Scientific, Singapore

    Google Scholar 

  2. Butler JJ, Malcuit MS (2000) Opt Lett 25:420

    Article  CAS  Google Scholar 

  3. Liu YJ, Sun XW, Dai HT, Liu JH, Xu KS (2005) Opt Mater 27:1451

    Article  CAS  Google Scholar 

  4. Nalwa HS (2001) Handbook of advanced electronic and photonic materials and devices. Academic, San Diego

    Google Scholar 

  5. Fuh AYG, Tsai MS, Huang LJ, Liu TC (1999) Appl Phys Lett 74:2572

    Article  CAS  Google Scholar 

  6. Nicoletta FP, Chidichimo G, Cupelli D, Filpo GD, Benedittis MD, Gabriele B, Salerno G, Fazio A (2005) Adv Funct Mater 15:995

    Article  CAS  Google Scholar 

  7. Doane JW (1990) in Liquid crystals—applications and uses, B. Bahauder, Ed., World Scientific, Singapore

  8. Montgomery GP (1989) Proc. SPIE IS4 577

  9. Choi CH, Kim BK, Kajiyama T (1994) Mol Cryst Liq Cryst 247:303

    Article  CAS  Google Scholar 

  10. Miyamoto A, Kikucki H, Morimura Y, Kajiyama T (1991) Macromolecules 24:3915

    Article  CAS  Google Scholar 

  11. Zhang J, Yoshikado S, Aruga T (2003) Appl Phys Lett 82:25

    Article  CAS  Google Scholar 

  12. Mazzulla A, Pagliusi P, Provenzano C, Russo G, Carbone G, Cipparrone G (2004) Appl Phys Lett 85:2505

    Article  CAS  Google Scholar 

  13. Escuit MJ, Kossyrev P, Crawford GP, Fiske TG, Colegrove J, Silverstein LD (2000) Appl Phys Lett 77:4262

    Article  Google Scholar 

  14. Beev K, Criante L, Lucchetta DE, Simoni F, Sainov S (2006) Opt Commun 260:192

    Article  CAS  Google Scholar 

  15. Kato K, Hisaki T, Date M (1999) Jpn J Appl Phys 38:1466

    Article  CAS  Google Scholar 

  16. Sarkar MD, Gill NL, Whitehead JB, Crawford GP (2003) Macromolecules 36:630

    Article  Google Scholar 

  17. Kozlovsky MV, Podgornov FD, Wang G, Haase W (2003) Hys Status Solidi A 198:242

    Article  CAS  Google Scholar 

  18. Sutherland RL, Natarajan LV, Tondiglia VP, Bunning TJ (1993) Chem Mater 5:1533

    Article  CAS  Google Scholar 

  19. Lucchetta DE, Karapinar R, Manni A, Simoni F (2002) J Appl Phys 91:6060

    Article  CAS  Google Scholar 

  20. Serbutoviez C, Kloosterboer JG, Boots HM, Touwslager FJ (1996) Macromolecules 29:7690

    Article  CAS  Google Scholar 

  21. Lu Y, Du F, Wu ST (2004) J Appl Phys 95:810

    Article  CAS  Google Scholar 

  22. Meng S, Kyu T, Natarajan LV, Tondiglia VP, Sutherland RL, Bunning TJ (2005) Macromolecules 38:4844

    Article  CAS  Google Scholar 

  23. Park S, Hong JW (2009) Thin Solid Films 517:3183

    Article  CAS  Google Scholar 

  24. Warren GY, Sarker MD, Qi J, Crawford GP (2001) SID Digest of Technical Papers, Society for Information Display (SID), San Jose

  25. Schulte MD, Clarson SJ, Natarajan LV, Tomlin DW, Bunning TJ (2000) Liq Cryst 27:467

    Article  CAS  Google Scholar 

  26. Natarajan LV, Tondiglia VP, Sutherland RL, Bunning TJ (1996) J Nonlinear Opt Phys Mater 5:89

    Article  CAS  Google Scholar 

  27. Zhou J, Collard DM, Park JO, Srinivasarao MJ (2002) Am Chem Soc 124:9980–9981

    Article  CAS  Google Scholar 

  28. Bra’s RE, Garcı’a O, Viciosa MT, Martins S, Sastre R, Dias CJ, Figueirinhas JL, Dionı’sio M (2008) Liquid Crystals 35(4):429–441

    Article  Google Scholar 

  29. Nomura H, Suzuki S, Atarashi Y (1991) Jpn J Appl Phys 30:327

    Article  CAS  Google Scholar 

  30. Klosowicz SJ, Zmija J (1995) Opt Eng 34:3440

    Article  CAS  Google Scholar 

  31. Crawford GP, Ondris-Crawford R, Zumer S, Doane JW (1993) Phys Rev Lett 70:1838

    Article  CAS  Google Scholar 

  32. Amundson KR, Srinivasarao M (1998) Phys ReV E 58:R1211–R1214

    Article  CAS  Google Scholar 

  33. Zhou J, Collard DM, Park JO, Srinivasarao M (2002) J Am Chem Soc 124:9980–9981

    Article  CAS  Google Scholar 

  34. Bhargava R, Wang SQ, Koenig JL (1999) Macromolecules 32:8982

    Article  CAS  Google Scholar 

  35. Bhargava R, Wang SQ, Koenig JL (1999) Macromolecules 32:8989

    Article  CAS  Google Scholar 

  36. Kashima M, Cao H, Meng Q, Liu H, Wang D, Li F, Yang H (2010) J Appl Polmer Sci 117:3434–3440

    CAS  Google Scholar 

  37. Spruce G, Pringle R D, (1992) Electron Commun Eng J 91

  38. Amundson K, Blaaderen A, Wiltzius P (1997) Phys Rev E 55:1646

    Article  CAS  Google Scholar 

  39. Dorzaic PS (1988) Liq Cryst 3:1543

    Article  Google Scholar 

  40. Maschke U, Coquerent X, Benmouna M (2002) Macromol Rapid Commun 23:159

    Article  CAS  Google Scholar 

  41. Sugimura A, Ishino D (2003) Thin Soild Films 438:433

    Article  Google Scholar 

  42. Kim BK, Kim SH (1998) J Polym Sci, Part B: Polym Phys 36:55

    Article  CAS  Google Scholar 

  43. Heller I (1974) Appl Phys Lett 24:349

    Article  Google Scholar 

  44. Kawatsuki N, Ono H (1995) J Appl Polym Sci 55:911

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge the instrumental support by Professors Park Jeong Man and Do Jung Won, Konkuk University. Besides this, we acknowledged Prof. Ahmad Khan for the valuable guidance and editing support for the preparation of this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Muhammad Jamil or Young Jae Jeon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahmad, F., Jamil, M., Woo, L.J. et al. The investigation of molecular affinity involved in poly(ethylene glycol)-based polymer-dispersed liquid crystal display. Colloid Polym Sci 290, 599–606 (2012). https://doi.org/10.1007/s00396-011-2569-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-011-2569-7

Keywords

Navigation