Skip to main content
Log in

Effect of alkyl chain length on the surface dilational rheological and foam properties of N-acyltaurate amphiphiles

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The dynamic dilational properties of sodium 2-(2-(alkylaryloxy)-alkylamido)ethanesulfonates (12+nB-Ts) at the air–water interfaces were investigated by drop shape analysis, and their foam properties were also measured. The influences of time and bulk concentration on surface dilational properties were expounded. The results show that the molecular interaction controls the nature of adsorption film during lower concentration range, and the film behaves elastic in nature. During higher concentration range, the diffusion exchange process controls the dynamic dilational properties and the surface film shows remarkable viscoelasticity. An increase in hydrophobic chain length enhances the molecular interaction at low concentration and speeds up the diffusion exchange process at high concentration, which results in the different variations of modulus at different concentration regions. For 12+nB-Ts, too short a chain probably produces bad film elasticity, whereas too great a length produces too fast liquid drainage. Therefore the optimal length in the branched chain leads to the best foam stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Feng J, Liu XP, Zhang L et al (2010) Dilational properties of anionic gemini surfactants with polyoxyethylene spacers at water–air and water–decane interfaces. Langmuir 26(14):11907–11914

    Article  CAS  Google Scholar 

  2. Martinez MJ, Sanchez CC, Patino JMR et al (2009) Bulk and interfacial behaviour of caseinoglycomacropeptide (GMP). Colloids Surf B 71(2):230–237

    Article  CAS  Google Scholar 

  3. Zhang L, Wang XC, Gong QT et al (2008) Interfacial dilational properties of tri-substituted alkyl benzene sulfonates at air/water and decane/water interfaces. J Colloid Interface Sci 327(2):451–458

    Article  CAS  Google Scholar 

  4. Fainerman VB, Zholob SA, Petkov JT et al (2008) C14EO8 adsorption characteristics studied by drop and bubble profile tensiometry. Colloids Surf B 323(1–3):56–62

    CAS  Google Scholar 

  5. Benjamins J, Lyklema J, Lucassen-Reynders EH (2006) Compression/expansion rheology of oil/water interfaces with adsorbed proteins. Comparison with the air/water surface. Langmuir 22:6181–6188

    Article  CAS  Google Scholar 

  6. Noskov BA, Akentiev AV, Bilibin AY et al (2004) Dynamic surface properties of poly(N-isopropylacrylamide) solutions. Langmuir 20:9669–9676

    Article  CAS  Google Scholar 

  7. Freer EM, Yim KS, Fuller GG et al (2004) Interfacial rheology of globular and flexible proteins at the hexadecane/water interface: comparison of shear and dilatation deformation. J Phys Chem B 108:3835–3844

    Article  CAS  Google Scholar 

  8. Maldonado-Valderrama J, Patino JMR (2010) Interfacial rheology of protein–surfactant mixtures. Curr Opin Colloid Interface Sci 5(4):271–282

    Article  Google Scholar 

  9. Cao XL, Zhang L, Cheng JB (2010) Effect of gemini surfactant on the interfacial dilational properties of hydrophobically modified partly hydrolyzed polyacrylamide. Chemical Journal of Chinese Universities 31(5):998–1002, in Chinese

    CAS  Google Scholar 

  10. Bykov AG, Lin SY, Loglio G et al (2010) Impact of surfactant chain length on dynamic surface properties of alkyltrimethylammonium bromide/polyacrylic acid solutions. Colloids Surf A 354(1–3):382–389

    Article  CAS  Google Scholar 

  11. Rodriguez Patino JM, Minones Conde J, Linares HM et al (2007) Interfacial and foaming properties of enzyme-induced hydrolysis of sunflower protein isolate. Food Hydrocolloids 21(5–6):782–793

    Article  CAS  Google Scholar 

  12. Rao A, Kim J, Thomas RR (2005) Interfacial rheological studies of gelatin-sodium dodecyl sulfate complexes adsorbed at the air–water interface. Langmuir 21:617–621

    Article  CAS  Google Scholar 

  13. Fang HB (2009) Dilational viscoelasticity of anionic polyelectrolyte/surfactant adsorption films at the water–octane interface. Colloid Polym Sci 287(10):1131–1137

    Article  CAS  Google Scholar 

  14. Alahverdjieva VS, Grigoriev DO, Fainerman VB et al (2008) Competitive adsorption from mixed hen egg-white lysozyme/surfactant solutions at the air–water interface studied by tensiometry, ellipsometry, and surface dilational rheology. J Phys Chem B 112(7):2136–2143

    Article  CAS  Google Scholar 

  15. Fourt L, Harkins WD (1938) Surface viscosity of long-chain alcohol monolayers. J Phys Chem 42(7):897–910

    Article  CAS  Google Scholar 

  16. Liggieri L, Attolini V, Ferrari M et al (2002) Measurement of the surface dilational viscoelasticity of adsorbed layers with a capillary pressure tensiometer. J Colloid Interface Sci 255(2):225–235

    Article  CAS  Google Scholar 

  17. Noskov BA, Aleksandrov DA, Gumennik EV et al (1998) The dynamic surface elasticity of sodium dodecyl sulfate solutions in the frequency range 0.8–5 Hz. Colloid Journal 60(2):204–210

    CAS  Google Scholar 

  18. Jiang Q, Olenick CJ, Valentini JE et al (1995) Dynamic penetration of surfactant into an insoluble monolayer. Langmuir 11(4):1138–1144

    Article  CAS  Google Scholar 

  19. Earnshaw JC, McCoo E (1994) Mode mixing of liquid surface-waves. Rev Lett 72(1):84–87

    Article  CAS  Google Scholar 

  20. Blijdenstein TBJ, de Groot PWN, Stoyanov SD (2010) On the link between foam coarsening and surface rheology: why hydrophobins are so different. Soft Matter 6(8):1799–1808

    Article  CAS  Google Scholar 

  21. Xu R, Dickinson E, Murray BS (2008) Morphological changes in adsorbed protein films at the oil–water interface subjected to compression, expansion, and heat processing. Langmuir 24(5):1979–1988

    Article  CAS  Google Scholar 

  22. Maldonado-Valderrama J, Fainerman VB, Galvez-Ruiz MJ et al (2005) Dilatational rheology of β-casein adsorbed layers at liquid–fluid interfaces. J Phys Chem B 109:17608–17616

    Article  CAS  Google Scholar 

  23. Davis JP, Foegeding EA, Hansen FK (2004) Electrostatic effects on the yield stress of whey protein isolate foams. Colloids Surf B 34(1):13–23

    Article  CAS  Google Scholar 

  24. Cases E, Rampini C, Cayot P (2005) Interfacial properties of acidified skim milk. J Colloid Interface Sci 282(1):133–141

    Article  CAS  Google Scholar 

  25. Kotsmar C, Aksenenko EV, Fainerman VB et al (2010) Equilibrium and dynamics of adsorption of mixed beta-casein/surfactant solutions at the water/hexane interface. Colloids Surf B 354(1–3):210–217

    CAS  Google Scholar 

  26. Pradines V, Kragel J, Fainerman VB et al (2009) Interfacial properties of mixed β-lactoglobulin-sds layers at the water/air and water/oil interface. J Phys Chem B 113(3):745–751

    Article  CAS  Google Scholar 

  27. Caro AL, Nino MRR, Patino JMR (2009) Dynamics of penetration of dipalmitoyl-phosphatidyl-choline (DPPC) monolayers by β-casein. Colloids Surf A 341(1–3):134–141

    Article  Google Scholar 

  28. Ruiz-Henestrosa VP, Sanchez CC, RodriguezPatino JM (2008) Adsorption and foaming characteristics of soy globulins and Tween 20 mixed systems. Ind Eng Chem Res 47(9):2876–2885

    Article  Google Scholar 

  29. Davis JP, Foegeding EA (2007) Comparisons of the foaming and interfacial properties of whey protein isolate and egg white proteins. Colloids Surf B 54(2):200–210

    Article  CAS  Google Scholar 

  30. Rodriguez Patino JM, Sanchez CC, Rodriguez Nino MR et al (2001) Structural and dynamic properties of milk proteins spread at the air–water interface. J Colloid Interface Sci 242(1):141–151

    Article  CAS  Google Scholar 

  31. Freer EM, Yim KS, Fuller GG et al (2004) Shear and dilatational relaxation mechanisms of globular and flexible proteins at the hexadecane/water interface. Langmuir 20:10159–10167

    Article  CAS  Google Scholar 

  32. Maldonado-Valderrama J, Martin-Rodriguez A, Galvez-Ruiz MJ et al (2008) Foams and emulsions of β-casein examined by interfacial rheology. Colloids Surf A 323(1–3):116–122

    Article  CAS  Google Scholar 

  33. Stubenrauch C, Miller R (2004) Stability of foam films and surface rheology: an oscillating bubble study at low frequencies. J Phys Chem B 108:6412–6421

    Article  CAS  Google Scholar 

  34. Koelsch P, Motschmann H (2005) Relating foam lamella stability and surface dilational rheology. Langmuir 21:6265–6269

    Article  CAS  Google Scholar 

  35. Garofalakis G, Murray BS (2002) Surface pressure isotherms, dilatational rheology, and Brewster angle microscopy of insoluble monolayers of sugar monoesters. Langmuir 18:4765–4774

    Article  CAS  Google Scholar 

  36. Miller SA, Kim E, Gray DH et al (1999) Synthesis and properties of chiral self-assembling lamellar polydiacetylene systems with very long-range order. Angew Chem Int Ed 38:3022–3026

    Article  CAS  Google Scholar 

  37. Lucassen J, Giles DJ (1975) Chem Soc Faraday Trans 71:217–232

    Article  CAS  Google Scholar 

  38. Lucassen J, Van Den Tempel M (1972) Longitudinal waves on visco-elastic surfaces. Colloid Interface Sci 41(3):491–498

    Article  CAS  Google Scholar 

  39. Yan F, Wang XG, Li ZQ et al (2008) Synthesis and properties of aromatic side chained N-acyltaurate surfactants. J Disper Sci Technol 29:387–396

    Article  Google Scholar 

  40. CascaoPereira LG, Theodoly O, Blanch HW et al (2003) Dilatational rheology of BSA conformers at the air/water interface. Langmuir 19:2349–2356

    Article  CAS  Google Scholar 

  41. Huang YP, Zhang L, Zhang L, Luo L, Zhao S, Yu JY (2007) Dynamic interfacial dilational properties of hydroxy-substituted alkyl benzenesulfonates. J Phys Chem B 111:5640–5647

    Article  CAS  Google Scholar 

  42. Rosen MJ (2004) Surfactants and interfacial phenomena, 3rd edn. Wiley, New York, pp 1–4

    Book  Google Scholar 

  43. Bos MA, Tv V (2001) Interfacial rheological properties of adsorbed protein layers and surfactants: a review. Adv Colloid Interface Sci 91:437–471

    Article  CAS  Google Scholar 

  44. Dickinson E, Ettelaie R, Murray BS et al (2002) Kinetics of disproportionation of air bubbles beneath a planar air–water interface stabilized by food proteins. J Colloid Interface Sci 252:202–213

    Article  CAS  Google Scholar 

  45. Wilde PJ (2000) Interfaces: their role in foam and emulsion behaviour. Curr Opin Colloid Interface Sci 5:176–181

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors thank the financial supports from the National Science and Technology Major Project (2011ZX05011-004), National High Technology Research and Development Program (2008AA092801), and the Knowledge Innovation Program of the Chinese Academy of Sciences (KJCX1-YW-21-03) of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lu Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, HQ., Zhang, L., Li, ZQ. et al. Effect of alkyl chain length on the surface dilational rheological and foam properties of N-acyltaurate amphiphiles. Colloid Polym Sci 290, 31–40 (2012). https://doi.org/10.1007/s00396-011-2518-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-011-2518-5

Keywords

Navigation