Skip to main content
Log in

Preparations and properties of waterborne polyurethane/allyl isocyanated-modified graphene oxide nanocomposites

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

We synthesized waterborne polyurethane (WPU)/allyl isocyanate modified graphene oxide (iGO) nanocomposites by UV curing, and the effects of iGO on the mechanical, dynamic mechanical, and thermal properties of the nanocomposites were systematically investigated. It was shown that the iGO chemically incorporated into the WPU chains by covalent bonding acts as a multifunctional cross-linking agent as well as reinforcing filler. Consequently, the tensile strength, glassy and rubbery state moduli, glass transition temperature, and thermal stability of the WPU were significantly increased up to an iGO content of 1%, beyond which most of the above properties showed a decrease, due probably to the auto-inhibition of the allyl compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lu Y, Larock RC (2008) Soybean-Oil-Based Waterborne Polyurethane Dispersions: Effects of Polyol Functionality and Hard Segment Content on Properties. Biomacromolecules 9:3332–3340

    Article  CAS  Google Scholar 

  2. Kim BK, Lee JC (1996) Waterborne polyurethanes and their properties. J Polym Sci Part A: Polym Chem 34:1095–1104

    Article  CAS  Google Scholar 

  3. Lu Y, Larock RC (2010) Soybean oil-based, aqueous cationic polyurethane dispersions: Synthesis and properties. Prog Org Coat 69:31–37

    Article  CAS  Google Scholar 

  4. Iyer NP, Gnanarajan TP, Radhakrishnan G (2002) Mechanical and Thermal Properties of Networks Prepared from Reactive Poly(urethane-imide)s and Blocked Polyurethane Prepolymer. Macromol Chem Phys 203:712–717

    Article  CAS  Google Scholar 

  5. Schwalm R, Häußling L, Reich W, Beak E et al (1997) Tuning the mechanical properties of UV coatings towards hard and flexible systems. Prog Org Coat 32:191–196

    Article  CAS  Google Scholar 

  6. Kim BS, Park SH, Kim BK (2006) Nanosilica-reinforced UV-cured polyurethane dispersion. Colloid & Polym Sci 284:1067–1072

    Article  CAS  Google Scholar 

  7. Kim BK, Seo JW, Jeong HM (2003) Morphology and properties of waterborne polyurethane/clay nanocomposites. Eur Polym J 39:85–91

    Article  CAS  Google Scholar 

  8. Dionne PJ, Ozisik R, Picu CR (2005) Structure and Dynamics of Polyethylene Nanocomposites. Macromolecules 38:9351–9358

    Article  CAS  Google Scholar 

  9. Hummers WS, Offeman RE (1958) Preparation of Graphitic Oxide. J Am Chem Soc 80:1339

    Article  CAS  Google Scholar 

  10. Hirata M, Gotou T, Horiuchi S, Fujiwara M, Ohba M (2004) Thin-film particles of graphite oxide 1: High-yield synthesis and flexibility of the particles. Carbon 42:2929–2937

    CAS  Google Scholar 

  11. Raghu AV, Lee YR, Jeong HM, Shin CM (2008) Preparation and Physical Properties of Waterborne Polyurethane/Functionalized Graphene Sheet Nanocomposites. Macro Chem Phys 209:2487–2493

    Article  CAS  Google Scholar 

  12. Cai D, Yusoh K, Song M (2009) The mechanical properties and morphology of a graphite oxide nanoplatelet/polyurethane composite. Nanotechnology 20:085712

    Article  Google Scholar 

  13. Maire J, Colas H, Maillard P (1968) Membranes de carbone et de graphite et leurs proprieties. Carbon 6:555–560

    Article  CAS  Google Scholar 

  14. Ishikawa T, Kanemaru T, Teranishi H, Onishi K (1978) Composites of oxidized graphite material and expanded graphite material. US Patent 4094951

  15. Touzain P, Yazumi R, Maire J (1986) Insertion compounds of graphite with improved performances and electrochemical applications of those compounds. US Patent 4584252

  16. Watanabe N, Nakajima T, Hagiwara R (1988) Method for producing graphite fluoride. US Patent 4753786

  17. Zhu C, Guo S, Fang Y, Dong S (2010) Reducing Sugar: New Functional Molecules for the Green Synthesis of Graphene Nanosheets. ACS Nano 4:2429–2437

    Article  CAS  Google Scholar 

  18. Park SJ, Lee KS, Bozoklu G, Cai W, Nguyen ST, Ruoff RS (2008) Graphene Oxide Papers Modified by Divalent Ions—Enhancing Mechanical Properties via Chemical Cross-Linking. ACS Nano 2:572–578

    Article  CAS  Google Scholar 

  19. Liu P, Gong K, Xiao P, Xiao M (2000) Preparation and characterization of poly(vinyl acetate)-intercalated graphite oxide nanocomposite. J Mater Chem 10:933–935

    Article  CAS  Google Scholar 

  20. Park SJ, Dikin DA, Nguyen ST, Ruoff RS (2009) Graphene Oxide Sheets Chemically Cross-Linked by Polyallylamine. J Phys Chem C 113:15801–15804

    Article  CAS  Google Scholar 

  21. Kim HW, Miura Y, Macosko CW (2010) Graphene/Polyurethane Nanocomposites for Improved Gas Barrier and Electrical Conductivity. Chem Mater 22:3441–3450

    Article  CAS  Google Scholar 

  22. Shan C, Yang H, Han D, Zhang Q, Ivaska A, Niu L (2009) Water-Soluble Graphene Covalently Functionalized by Biocompatible Poly-l-lysine. Langmuir 25:12030–12033

    Article  CAS  Google Scholar 

  23. Lee SK, Yoon SH, Jeong ID, Hartwig A, Kim BK (2011) Waterborne polyurethane nanocomposites having shape memory effects. J Polym Sci Part A: Polym Chem 49:634–641

    Article  CAS  Google Scholar 

  24. Titelman GI, Gelman V, Bron S, Khalfin RL, Cohen Y, Bianco-Peled H (2005) Characteristics and microstructure of aqueous colloidal dispersions of graphite oxide. Carbon 43:641–649

    Article  CAS  Google Scholar 

  25. Jang MK, Hartwig A, Kim BK (2009) Shape memory polyurethanes cross-linked by surface modified silica particles. J Mater Chem 19:1166–1172

    Article  CAS  Google Scholar 

  26. Jung DH, Jeong HM, Kim BK (2010) Organic–inorganic chemical hybrids having shape memory effect. J Mater Chem 20:3458–3466

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The research has been supported by National Core Research Center and PNU-IFAM JRC organized at PNU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. K. Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoon, S.H., Park, J.H., Kim, E.Y. et al. Preparations and properties of waterborne polyurethane/allyl isocyanated-modified graphene oxide nanocomposites. Colloid Polym Sci 289, 1809–1814 (2011). https://doi.org/10.1007/s00396-011-2498-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-011-2498-5

Keywords

Navigation