Skip to main content
Log in

Facile synthesis of thermo- and pH-responsive biodegradable microgels

  • Short Communication
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

A novel and facile strategy has been designed to prepare biodegradable microgels with thermo- and pH-responsive property. The microgels were synthesized by the crosslinking of N-isopropylacrylamide with vinyl groups functionalized poly(L-glutamic acid) (PGA). The resultant microgels exhibited pH-dependent phase transition behaviors in aqueous solutions and underwent abrupt lower critical solution temperature decrease when the pH was reduced below the pK a of PGA. Dynamic light scattering measurement revealed that the microgels exhibited shrinkage as the temperature increased or the pH decreased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

References

  1. Gil ES, Hudson SM (2004) Stimuli-responsive polymers and their bioconjugates. Prog Polym Sci 29:1173–1222

    Article  CAS  Google Scholar 

  2. Qiu Y, Park K (2001) Environment-sensitive hydrogels for drug delivery. Adv Drug Del Rev 53:321–339

    Article  CAS  Google Scholar 

  3. Lyon LA, Meng ZY, Singh N, Sorrell CD, John AS (2009) Thermoresponsive microgel-based materials. Chem Soc Rev 38:865–874

    Article  CAS  Google Scholar 

  4. Karg M, Pastoriza-Santos I, Rodriguez-Gonzalez B, von Klitzing R, Wellert S, Hellweg T (2008) Temperature, pH, and ionic strength induced changes of the swelling behavior of PNIPAM-poly(allylacetic acid) copolymer microgels. Langmuir 24:6300–6306

    Article  CAS  Google Scholar 

  5. Zhang JT, Liu XL, Fahr A, Jandt KD (2008) A new strategy to prepare temperature-sensitive poly(N-isopropylacrylamide) microgels. Colloid Polym Sci 286:1209–1213

    Article  CAS  Google Scholar 

  6. Bysell H, Schmidtchen A, Malmsten M (2009) Binding and release of consensus peptides by poly(acrylic acid) microgels. Biomacromolecules 10:2162–2168

    Article  CAS  Google Scholar 

  7. Lally S, Bird R, Freemont TJ, Saunders BR (2009) Microgels containing methacrylic acid: effects of composition on pH-triggered swelling and gelation behaviours. Colloid Polym Sci 287:335–343

    Article  CAS  Google Scholar 

  8. Imaz A, Miranda JI, Ramos J, Forcada J (2008) Evidences of a hydrolysis process in the synthesis of N-vinylcaprolactam-based microgels. Eur Polym J 44:4002–4011

    Article  CAS  Google Scholar 

  9. Tan BH, Ravi P, Tam KC (2006) Synthesis and characterization of novel pH-responsive polyampholyte microgels. Macromol Rapid Commun 27:522–528

    Article  CAS  Google Scholar 

  10. Zhang J, Chu LY, Cheng CJ, Mi DF, Zhou MY, Ju XJ (2008) Graft-type poly(N-isopropylacrylamide-co-acrylic acid) microgels exhibiting rapid thermo- and pH-responsive properties. Polymer 49:2595–2603

    Article  CAS  Google Scholar 

  11. Zhou SQ, Chu B (1998) Synthesis and volume phase transition of poly(methacrylic acid-co-N-isopropylacrylamide) microgel particles in water. J Phys Chem B 102:1364–1371

    Article  CAS  Google Scholar 

  12. Ballauff M, Lu Y (2007) “Smart” nanoparticles: preparation, characterization and applications. Polymer 48:1815–1823

    Article  CAS  Google Scholar 

  13. Leung MF, Zhu JM, Harris FW, Li P (2004) New route to smart core-shell polymeric microgels: synthesis and properties. Macromol Rapid Commun 25:1819–1823

    Article  CAS  Google Scholar 

  14. De Geest BG, Dejugnat C, Verhoeven E, Sukhorukov GB, Jonas AM, Plain J, Demeester J, De Smedt SC (2006) Layer-by-layer coating of degradable microgels for pulsed drug delivery. J Control Release 116:159–169

    Article  Google Scholar 

  15. Li Y, de Vries R, Slaghek T, Timmermans J, Stuart MAC, Norde W (2009) Preparation and characterization of oxidized starch polymer microgels for encapsulation and controlled release of functional ingredients. Biomacromolecules 10:1931–1938

    Article  CAS  Google Scholar 

  16. Zhang H, Mardyani S, Chan WCW, Kumacheva E (2006) Design of biocompatible chitosan microgels for targeted pH-mediated intracellular release of cancer therapeutics. Biomacromolecules 7:1568–1572

    Article  CAS  Google Scholar 

  17. Babu VR, Ksvk R, Sairam M, Naidu BVK, Hosamani KM, Aminabhavi TM (2006) pH sensitive interpenetrating network microgels of sodium alginate-acrylic acid for the controlled release of ibuprofen. J Appl Polym Sci 99:2671–2678

    Article  CAS  Google Scholar 

  18. Schild HG (1992) Poly(N-isopropylacrylamide)-experiment, theory and application. Prog Polym Sci 17:163–249

    Article  CAS  Google Scholar 

  19. He CL, Zhao CW, Chen XS, Guo ZJ, Zhuang XL, Jing XB (2008) Novel pH- and temperature-responsive block copolymers with tunable pH-responsive range. Macromol Rapid Commun 29:490–497

    Article  CAS  Google Scholar 

  20. Deming TJ (2002) Methodologies for preparation of synthetic block copolypeptides: materials with future promise in drug delivery. Adv Drug Del Rev 54:1145–1155

    Article  CAS  Google Scholar 

  21. Kricheldorf Hans R (2006) Polypeptides and 100 years of chemistry of α-amino acid N-carboxyanhydrides. Angew Chem Int Ed 45:5752–5784

    Article  CAS  Google Scholar 

  22. Lu H, Cheng JJ (2008) N-trimethylsilyl amines for controlled ring-opening polymerization of amino acid N-carboxyanhydrides and facile end group functionalization of polypeptides. J Am Chem Soc 130:12562–12563

    Article  CAS  Google Scholar 

  23. Tansey W, Ke S, Cao XY, Pasuelo MJ, Wallace S, Li C (2004) Synthesis and characterization of branched poly(l-glutamic acid) as a biodegradable drug carrier. J Control Release 94:39–51

    Article  CAS  Google Scholar 

  24. Otani Y, Tabata Y, Ikada Y (1996) Rapidly curable biological glue composed of gelatin and poly(l-glutamic acid). Biomaterials 17:1387–1391

    Article  CAS  Google Scholar 

  25. Carlsen A, Lecommandoux S (2009) Self-assembly of polypeptide-based block copolymer amphiphiles. Curr Opin Colloid Interface Sci 14:329–339

    Article  CAS  Google Scholar 

  26. He CL, Zhao CW, Guo XH, Guo ZJ, Chen XS, Zhuang XL, Liu SY, Jing XB (2008) Novel temperature- and pH-responsive graft copolymers composed of poly(l-glutamic acid) and poly(N-isopropylacrylamide). J Polym Sci Part A: Polym Chem 46:4140–4150

    Article  CAS  Google Scholar 

  27. Hawkins RB, Holtzer A (1972) Some macromolecular properties of poly(α-l-glutamic acid) random coils. Macromolecules 5:294–301

    Article  CAS  Google Scholar 

  28. Bulmus V, Ding ZL, Long CJ, Stayton PS, Hoffman AS (1999) Site-specific polymer–streptavidin bioconjugate for pH-controlled binding and triggered release of biotin. Bioconjug Chem 11:78–83

    Article  Google Scholar 

  29. Chen GH, Hoffman AS (1995) Graft copolymers that exhibit temperature-induced phase transitions over a wide range of pH. Nature 373:49–52

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project was financially supported by the National Natural Science Foundation of China (50773081, 50973108 and 50733003), the National Natural Science Foundation of China-A3 Foresight Program (50425309), the International Cooperation fund of Science and Technology (Key project 2007DFR5020) from the Ministry of Science and Technology of China, and Jilin Science and Technology Bureau, Science and Technology Development Project (20095003 and 20096018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiuli Zhuang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, C., Gao, X., He, P. et al. Facile synthesis of thermo- and pH-responsive biodegradable microgels. Colloid Polym Sci 289, 447–451 (2011). https://doi.org/10.1007/s00396-010-2365-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-010-2365-9

Keywords

Navigation