Skip to main content
Log in

Structure changes of electrorheological fluids based on polyaniline particles with various hydrophilicities and time dependence of shear stress and conductivity during flow

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Particles of polyaniline protonated with perfluorooctanesulfonic acid provided a material with hydrophobic surface. This property enabled its perfect dispersion in silicone oil due to its good compatibility with the hydrophobic medium. In contrast, in a suspension of hydrophilic polyaniline particles doped with sulfamic acid, strong interactions of particles prevailed, which led to the formation of entangled chains of aggregated particles in suspension. The difference in structural properties of suspensions exists already in the absence of electric field and significantly influences their electrorheological behavior after application of electric field. The formation of electrorheological structure has been monitored by recording time dependences of the shear stress and the electric current passing through the flowing suspensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Block H, Kelly JP (1988) Electro-rheology. J Phys D Appl Phys 21:1661–1677

    Article  CAS  Google Scholar 

  2. Jordan TC, Shaw MT (1989) Electrorheology. IEEE Trans Electr Insul 24:849–878

    Article  CAS  Google Scholar 

  3. Blackwood KM, Block H (1993) Semi-conducting polymers in electrorheology: a modern approach to smart fluids. Trends Polym Sci 14:98–104

    Google Scholar 

  4. Parthasarathy M, Klingenberg DJ (1996) Electrorheology: mechanisms and models. Mater Sci Eng R 17:57–103

    Article  Google Scholar 

  5. Hao T (2001) Electrorheological fluids. Adv Mater 13:1847–1857

    Article  CAS  Google Scholar 

  6. Hao T (2002) Electrorheological suspensions. Adv Colloid Interface Sci 97:1–35

    Article  CAS  Google Scholar 

  7. Sung JH, Cho MS, Choi HJ, Jhon MS (2004) Electrorheology of semiconducting polymers. J Ind Eng Chem 10:1217–1229

    CAS  Google Scholar 

  8. Quadrat O, Stejskal J (2006) Polyaniline in electrorheology. J Ind Eng Chem 12:352–361

    CAS  Google Scholar 

  9. Block H, Kelly JP, Qin A, Watson T (1990) Materials and mechanisms in electrorheology. Langmuir 6:6–14

    Article  CAS  Google Scholar 

  10. Choi HJ, Cho MS, To K (1998) Electrorheological and dielectric characteristics of semiconductive polyaniline-silicone oil suspensions. Physica A 254:272–279

    Article  CAS  Google Scholar 

  11. Ikazaki F, Kawai A, Uchida K, Kawakami T, Edamura K, Sakurai K, Anzai H, Asako Y (1998) Mechanisms of electrorheology: the effect of the dielectric property. J Phys D Appl Phys 31:336–347

    Article  CAS  Google Scholar 

  12. Marschall L, Zukovski CF IV, Goodwin JW (1989) J Chem Soc Faraday Trans 85:2785–2795

    Article  Google Scholar 

  13. Lengálová A, Pavlínek V, Sáha P, Quadrat O, Kitano T, Stejskal J (2003) Influence of particle concentration on the electrorheological efficiency of polyaniline suspensions. Eur Polym J 39:641–645

    Article  Google Scholar 

  14. Choi HJ, Jhon MS (2009) Electrorheology of polymers and nanocomposites. Soft Matter 5:1562–1567

    Article  CAS  Google Scholar 

  15. Jang WH, Kim JW, Choi HJ, Jhon MS (2001) Synthesis and electrorheology of camphorsulfonic acid doped polyaniline suspensions. Colloid Polym Sci 279:823–827

    Article  CAS  Google Scholar 

  16. Stejskal J, Prokeš J, Trchová M (2008) Reprotonation of polyaniline: a route to various conducting polymer materials. React Funct Polym 68:1355–1361

    Article  CAS  Google Scholar 

  17. Stěnička M, Pavlínek V, Sáha P, Blinova NV, Stejskal J, Quadrat O (2009) The electrorheological efficiency of polyaniline particles with various conductivities suspended in silicone oil. Colloid Polym Sci 287:403–412

    Article  Google Scholar 

  18. Lee JH, Cho MS, Choi HJ, Jhon MS (1999) Effect of polymerization temperature on polyaniline based electrorheological suspensions. Colloid Polym Sci 277:73–76

    Article  CAS  Google Scholar 

  19. Stěnička M, Pavlínek V, Sáha P, Blinova NV, Stejskal J, Quadrat O (2010) Effect of hydrophilicity of polyaniline particles on their electrorheology. Steady flow and dynamic behaviour. J Colloid Interface Sci 346:236–240

    Article  Google Scholar 

  20. Lengálová A, Pavlínek V, Sáha P, Stejskal J, Quadrat O (2003) Electrorheology of polyaniline-coated inorganic particles in silicone oil. J Colloid Interface Sci 258:174–178

    Article  Google Scholar 

  21. Stejskal J, Gilbert RG (2002) Polyaniline. Preparation of a conducting polymer (IUPAC technical report). Pure Appl Chem 74:857–867

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Ministry of Education, Youth and Sports of the Czech Republic (MSM 7088352101), the Grant Agency of the Czech Republic (202/09/1626), and the Grant Agency of the Academy of Sciences of the Czech Republic (IAA 400500905) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Stěnička.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stěnička, M., Pavlínek, V., Sáha, P. et al. Structure changes of electrorheological fluids based on polyaniline particles with various hydrophilicities and time dependence of shear stress and conductivity during flow. Colloid Polym Sci 289, 409–414 (2011). https://doi.org/10.1007/s00396-010-2357-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-010-2357-9

Keywords

Navigation