Skip to main content
Log in

Comparison of aggregation behaviors between branched and linear block polyethers: MesoDyn simulation study

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The comparison of aggregation behaviors between the branched block polyether T1107 (polyether A) and linear polyether (EO)60(PO)40(EO)60 (polyether B) in aqueous solution are investigated by the MesoDyn simulation. Polyether A forms micelles at lower concentration and has a smaller aggregation number than B. Both the polyethers show the time-dependent micellar growth behaviors. The spherical micelles appear and then change to rod-like micelles with time evolution in the 10 vol% solution of polyether A. The micellar cluster appears and changes to pseudo-spherical micelles with time evolution in the 20 vol% solution of polyether A. However, the spherical micelles appear and change to micellar cluster with time evolution in the 20 vol% polyether B solution. The shear can induce the micellar transition of both block polyethers. When the shear rate is 1 × 105 s−1, the shear can induce the sphere-to-rod transition of both polyethers at the concentration of 10 and 20 vol%. When the shear rate is lower than 1 × 105 s−1, the huge micelles and micellar clusters can be formed in the 10 and 20 vol% polyether A systems under the shear, while the huge micelles are formed and then disaggregated with the time evolution in the 20 vol% polyether B system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Alexandridis P, Athanassiou V, Hatton TA (1995) Pluronic-p105 PEO–PPO–PEO block copolymer in aqueous urea solutions: micelle formation, structure, and microenvironment. Langmuir 11(7):2442–2450

    Article  CAS  Google Scholar 

  2. Alexandridis P, Hatton TA (1995) Poly (ethylene oxide)-poly (propylene oxide)-poly (ethylene oxide) block copolymer surfactants in aqueous solutions and at interfaces: thermodynamics, structure, dynamics, and modeling. Colloids Surf, A 96(1–2):1–46

    Article  CAS  Google Scholar 

  3. Alexandridis P, Nivaggioli T, Hatton TA (1995) Temperature effects on structural properties of pluronic p104 and f108 PEO–PPO–PEO block copolymer solutions. Langmuir 11(5):1468–1476

    Article  CAS  Google Scholar 

  4. Liang X, Guo C, Ma J, Wang J, Chen S, Liu H (2007) Temperature-dependent aggregation and disaggregation of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) block copolymer in aqueous solution. J Phys Chem B 111(46):13217–13220

    Article  CAS  Google Scholar 

  5. Yang B, Guo C, Chen S, Ma J, Wang J, Liang X, Zheng L, Liu H (2006) Effect of acid on the aggregation of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) block copolymers. J Phys Chem B 110(46):23068–23074

    Article  CAS  Google Scholar 

  6. Firestone MA, Tiede DM, Seifert S (2000) Magnetic field-induced ordering of a polymer-grafted biomembrane-mimetic hydrogel. J Phys Chem B 104(11):2433–2438

    Article  CAS  Google Scholar 

  7. Firestone MA, Wolf AC, Seifert S (2003) Small-angle X-ray scattering study of the interaction of poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) triblock copolymers with lipid bilayers. Biomacromolecules 4(6):1539–1549

    Article  CAS  Google Scholar 

  8. Liu L-Z, Wan Q, Liu T, Hsiao BS, Chu B (2002) Salt-induced polymer gelation and formation of nanocrystals in a polymer–salt system. Langmuir 18(26):10402–10406

    Article  CAS  Google Scholar 

  9. Wu C, Liu T, Chu B, Schneider DK, Graziano V (1997) Characterization of the PEO–PPO–PEO triblock copolymer and its application as a separation medium in capillary electrophoresis. Macromolecules 30(16):4574–4583

    Article  CAS  Google Scholar 

  10. Alexandridis P, Holzwarth JF (1997) Differential scanning calorimetry investigation of the effect of salts on aqueous solution properties of an amphiphilic block copolymer (poloxamer). Langmuir 13(23):6052–6074

    Article  Google Scholar 

  11. Michels B, Watona G, Zanab R (2001) Evidence of micelle growth in aqueous solutions of the amphiphilic poly(ethylene oxide)–poly(propylene oxide)–poly(ethylene oxide) triblock copolymers from differential scanning microcalorimetry. Colloids Surf A 183–185:55–65

    Article  Google Scholar 

  12. Pattersona I, Chowdhryb BZ, Leharne S (1996) Evaluation of surfactant monomer concentrations in equilibrium with micelles and their temperature dependence for oxyethylene/oxypropylene/oxyethylene triblock copolymers using dsc. Colloids Surf A 111(3):213–222

    Article  Google Scholar 

  13. Eiser E, Molino F, Porte G, Diat O (2000) Nonhomogeneous textures and banded flow in a soft cubic phase under shear. Phys Rev E 61(6):6759–6764

    Article  CAS  Google Scholar 

  14. King SM, Heenan RK, Cloke VM, Washington C (1997) Neutron scattering from a poly(oxyethylene)-poly(oxypropylene)-poly(oxyethylene) copolymer in dilute aqueous solution under shear flow. Macromolecules 30(20):6215–6222

    Article  CAS  Google Scholar 

  15. Pedersen JS, Svaneborgb C (2002) Scattering from block copolymer micelles. Curr Opin Colloid Interface Sci 7(3,4):158–166

    Article  CAS  Google Scholar 

  16. Chen SH, Mallamace F, Faraone A, Gambadauro P, Lombardo D, Chen WR (2002) Observation of a re-entrant kinetic glass transition in a micellar system with temperature-dependent attractive interaction. Eur Phys J E 9(3):283–286

    Article  CAS  Google Scholar 

  17. Jorgensen EB, Hvidt S, Brown W, Schillen K (1997) Effects of salts on the micellization and gelation of a triblock copolymer studied by rheology and light scattering. Macromolecules 30(8):2355–2364

    Article  CAS  Google Scholar 

  18. Liu Y, Chen S-H, Huang JS (1998) Light-scattering studies of concentrated copolymer micellar solutions. Macromolecules 31(18):6226–6233

    Article  CAS  Google Scholar 

  19. Chen ZR, Issaian AM, Kornfield JA, Smith SD, Grothaus JT, Satkowski MM (1997) Dynamics of shear-induced alignment of a lamellar diblock: a rheo-optical, electron microscopy, and X-ray scattering study. Macromolecules 30(23):7096–7114

    Article  CAS  Google Scholar 

  20. Liu YC, Chen SH, Huang JS (1996) Relationship between the microstructure and rheology of micellar solutions formed by a triblock copolymer surfactant. Phys Rev E 54(2):1698–1708

    Article  CAS  Google Scholar 

  21. Schmidt G, Richtering W, Lindner P, Alexandridis P (1998) Shear orientation of a hexagonal lyotropic triblock copolymer phase as probed by flow birefringence and small-angle light and neutron scattering. Macromolecules 31(7):2293–2298

    Article  CAS  Google Scholar 

  22. Waton G, Michels B, Steyer A, Schosseler F (2004) Shear-induced demixing and shear-banding instabilities in dilute triblock copolymer solutions. Macromolecules 37(6):2313–2321

    Article  CAS  Google Scholar 

  23. Espanol P, Warren P (1995) Statistical mechanics of dissipative particle dynamics. Europhys Lett 30(4):191–196

    Article  CAS  Google Scholar 

  24. Groot RD, Madden TJ (1998) Dynamic simulation of diblock copolymer microphase separation. J Chem Phys 108(20):8713–8724

    Article  CAS  Google Scholar 

  25. Groot RD, Warren PB (1997) Dissipative particle dynamics: bridging the gap between atomistic and mesoscopic simulation. J Chem Phys 107(11):4423–4435

    Article  CAS  Google Scholar 

  26. Fraaije JGEM (1993) Dynamic density functional theory for microphase separation kinetics of block copolymer melts. J Chem Phys 99(11):9202–9212

    Article  CAS  Google Scholar 

  27. Maurits NM, Altevogt P, Evers OA, Fraaije JGEM (1996) Simple numerical quadrature rules for gaussian chain polymer density functional calculations in 3d and implementation on parallel platforms. Comput Theor Polym Sci 6(1–2):1–8

    CAS  Google Scholar 

  28. Maurits NM, van Vlimmeren BAC, Fraaije JGEM (1997) Mesoscopic phase separation dynamics of compressible copolymer melts. Phys Rev E 56(1):816–825

    Article  CAS  Google Scholar 

  29. Warren PB (1998) Dissipative particle dynamics. Curr Opin Colloid Interface Sci 3(6):620–624

    Article  CAS  Google Scholar 

  30. Fraaije JGEM, Sevink GJA (2003) Model for pattern formation in polymer surfactant nanodroplets. Macromolecules 36(21):7891–7893

    Article  CAS  Google Scholar 

  31. Fraaije JGEM, van Vlimmeren BAC, Maurits NM, Postma M, Evers OA, Hoffmann C, Altevogt P, Goldbeck-Wood G (1997) The dynamic mean-field density functional method and its application to the mesoscopic dynamics of quenched block copolymer melts. J Chem Phys 106(10):4260–4269

    Article  CAS  Google Scholar 

  32. Lyakhova KS, Zvelindovsky AV, Sevink GJA, Fraaije JGEM (2003) Inverse mapping of block copolymer morphologies. J Chem Phys 118(18):8456–8459

    Article  CAS  Google Scholar 

  33. Ganguly R, Kumbhakar M, Aswal VK (2009) Time dependent growth of the block copolymer p123 micelles near cloud point: employing heat cycling as a tool to form kinetically stable wormlike micelles. J Phys Chem B 113(28):9441–9446

    Article  CAS  Google Scholar 

  34. Zhang X, Yuan S, Wu J (2006) Mesoscopic simulation on phase behavior of ternary copolymeric solution in the absence and presence of shear. Macromolecules 39(19):6631–6642

    Article  CAS  Google Scholar 

  35. Gong H, Xu G, Ding H, Shi X, Tan Y (2009) Aggregation behavior of block polyethers with branched structure at air/water surface. Eur Polym J 45(9):2540–2548

    Article  CAS  Google Scholar 

  36. Wang F, Xu G, Zhang Z, Xin X (2006) Synthesis of monodisperse cds nanospheres in an inverse microemulsion system formed with a dendritic polyether copolymer. Eur J Inorg Chem 2006(1):109–114

    Article  Google Scholar 

  37. Zhang Z, Xu G, Wang F, Dong S, Chen Y (2005) Demulsification by amphiphilic dendrimer copolymers. J Colloid Interface Sci 282(1):1–4

    Article  CAS  Google Scholar 

  38. Zhang Z, Xu G, Wang F, Dong S, Li Y (2004) Characterization and demulsification of poly(ethylene oxide)-block-poly(propylene oxide)-block-poly (ethylene oxide) copolymers. J Colloid Interface Sci 277(2):464–470

    Article  CAS  Google Scholar 

  39. Xin X, Xu G, Zhao T, Zhu Y, Shi X, Gong H, Zhang Z (2008) Dispersing carbon nanotubes in aqueous solutions by a starlike block copolymer. J Phys Chem C 112(42):16377–16384

    Article  CAS  Google Scholar 

  40. Xin X, Xu G, Zhang Z, Chen Y, Wang F (2007) Aggregation behavior of star-like PEO–PPO–PEO block copolymer in aqueous solution. Eur Polym J 43(7):3106–3111

    Article  CAS  Google Scholar 

  41. Xin X, Xu G, Wang Y, Mao H, Zhang Z (2008) Interaction between star-like block copolymer and sodium oleate in aqueous solutions. Eur Polym J 44(10):3246–3255

    Article  CAS  Google Scholar 

  42. Li YM, Xu GY, Chen AM, Yuan SL, Cao XR (2005) Aggregation between xanthan and nonyphenyloxypropyl b-hydroxyltrimethylammonium bromide in aqueous solution: MesoDyn simulation and binding isotherm measurement. J Phys Chem B 109(47):22290–22295

    Article  CAS  Google Scholar 

  43. Bai G, Nichifor M, Lopes A, Bastos M (2004) Thermodynamic characterization of the interaction behavior of a hydrophobically modified polyelectrolyte and oppositely charged surfactants in aqueous solution: effect of surfactant alkyl chain length. J Phys Chem B 109(1):518–525

    Article  Google Scholar 

  44. van Vlimmeren BAC, Maurits NM, Zvelindovsky AV, Sevink GJA, Fraaije JGEM (1999) Simulation of 3d mesoscale structure formation in concentrated aqueous solution of the triblock polymer surfactants (ethylene oxide)13(propylene oxide)30(ethylene oxide)13 and (propylene oxide)19(ethylene oxide)33(propylene oxide)19. Application of dynamic mean-field density functional theory. Macromolecules 32(3):646–656

    Article  Google Scholar 

  45. Lam Y-M, Goldbeck-Wood G (2003) Mesoscale simulation of block copolymers in aqueous solution: parameterisation, micelle growth kinetics and the effect of temperature and concentration morphology. Polymer 44(12):3593–3605

    Article  CAS  Google Scholar 

  46. Zhang M, Choi P, Sundararaj U (2003) Molecular dynamics and thermal analysis study of anomalous thermodynamic behavior of poly (ether imide)/polycarbonate blends. Polymer 44(6):1979–1986

    Article  CAS  Google Scholar 

  47. Honeycutt JD (1998) A general simulation method for computing conformational properties of single polymer chains. Comput Theor Polym Sci 8(1–2):1–8

    Article  CAS  Google Scholar 

  48. Wescott JT, Qi Y, Subramanian L, Capehart TW (2006) Mesoscale simulation of morphology in hydrated perfluorosulfonic acid membranes. J Chem Phys 124(13):134702–134714

    Article  Google Scholar 

  49. Bae YC, Shim JJ, Soane DS, Prausnitz JM (1993) Representation of vapor–liquid and liquid–liquid equilibria for binary systems containing polymers: applicability of an extended Flory–Huggins equation. J Appl Polym Sci 47(7):1193–1206

    Article  CAS  Google Scholar 

  50. Baulin VA, Halperin A (2002) Concentration dependence of the flory parameter within two-state models. Macromolecules 35(16):6432–6438

    Article  CAS  Google Scholar 

  51. Horvat A, Lyakhova KS, Sevink GJA, Zvelindovsky AV, Magerle R (2004) Phase behavior in thin films of cylinder-forming aba block copolymers: mesoscale modeling. J Chem Phys 120(2):1117–1126

    Article  CAS  Google Scholar 

  52. Yuan S, Zhang X, Chan K (2009) Effects of shear and charge on the microphase formation of p123 polymer in the sba-15 synthesis investigated by mesoscale simulations. Langmuir 25(4):2034–2045

    Article  CAS  Google Scholar 

  53. Cao X, Xu G, Li Y, Zhang Z (2005) Aggregation of poly(ethylene oxide)-poly(propylene oxide) block copolymers in aaqueous solution: DPD simulation study. J Phys Chem A 109(45):10418–10423

    Article  CAS  Google Scholar 

  54. Li Y, Xu G, Zhu Y, Wang Y, Gong H (2009) Aggregation behavior of pluronic copolymer in the presence of surfactant: mesoscopic simulation. Colloids Surf, A 334(1-3):124–130

    Article  CAS  Google Scholar 

  55. Zhao Y, Chen X, Yang C, Zhang G (2007) Mesoscopic simulation on phase behavior of pluronic p123 aqueous solution. J Phys Chem B 111(50):13937–13942

    Article  CAS  Google Scholar 

  56. Fredrickson GH, Helfand E (1987) Fluctuation effects in the theory of microphase separation in block copolymers. J Chem Phys 87(1):697–705

    Article  CAS  Google Scholar 

  57. Morozov AN, Fraaije JGEM (2002) Orientations of the lamellar phase of block copolymer melts under oscillatory shear flow. Phys Rev E 65(3):031803

    Article  CAS  Google Scholar 

  58. Morozov AN, Zvelindovsky AV, Fraaije JGEM (2000) Orientational phase transitions in the hexagonal phase of a diblock copolymer melt under shear flow. Phys Rev E 61(4):4125–4132

    Article  CAS  Google Scholar 

  59. Guo SL, Hou TJ, Xu XJ (2002) Simulation of the phase behavior of the (eo)13(po)30(eo)13(pluronic l64)/water/p-xylene system using MesoDyn. J Phys Chem B 106(43):11397–11403

    Article  CAS  Google Scholar 

  60. Mortensen K, Pedersen JS (1993) Structural study on the micelle formation of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymer in aqueous solution. Macromolecules 26(4):805–812

    Article  CAS  Google Scholar 

  61. Perreura C, Habasa J-P, Lappb A, Peyrelasse J (2006) Salt influence upon the structure of aqueous solutions of branched PEO–PPO–PEO copolymers. Polymer 47(3):841–848

    Article  Google Scholar 

  62. Nolan SL, Phillips RJ, Cotts PM, Dungan SR (1997) Light scattering study on the effect of polymer composition on the structural properties of PEO–PPO–PEO micelles. J Colloid Interface Sci 191(2):291–302

    Article  CAS  Google Scholar 

  63. Wanka G, Hoffmann H, Ulbricht W (1994) Phase diagrams and aggregation behavior of poly (oxyethylene)-poly (oxypropylene) -poly( oxyethylene) triblock copolymers in aqueous solutions. Macromolecules 27(15):4145–4159

    Article  CAS  Google Scholar 

  64. Ganguly R, Choudhury N, Aswal VK, Hassan PA (2008) Pluronic l64 micelles near cloud point: investigating the role of micellar growth and interaction in critical concentration fluctuation and percolation. J Phys Chem B 113(3):668–675

    Article  Google Scholar 

  65. Kositza MJ, Bohne C, Alexandridis P, Hatton TA, Holzwarth JF (1999) Dynamics of micro- and macrophase separation of amphiphilic block-copolymers in aqueous solution. Macromolecules 32(17):5539–5551

    Article  CAS  Google Scholar 

  66. Yang S, Yuan S, Zhang X, Yan Y (2008) Phase behavior of tri-block copolymers in solution: mesoscopic simulation study. Colloids Surf, A 322(1–3):87–96

    Article  CAS  Google Scholar 

  67. Alexandridis P, Athanassiou V, Fukuda S, Hatton TA (1994) Surface activity of poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) copolymers. Langmuir 10(8):2604–2612

    Article  CAS  Google Scholar 

  68. De Lisi R, Milioto S (2000) Poly(ethylene oxide)13-poly(propylene oxide)30-poly(ethylene oxide)13 electrolyte interactions in aqueous solutions at some temperatures. Langmuir 16(13):5579–5583

    Article  Google Scholar 

  69. Han F, He X, Huang J, Li Z, Wang Y, Fu H (2004) Surface properties and aggregates in the mixed systems of bolaamphiphiles and their oppositely charged conventional surfactants. J Phys Chem B 108(17):5256–5262

    Article  CAS  Google Scholar 

  70. Yan Y, Huang J, Li Z, Han F, Ma J (2003) Aggregates transition depending on the concentration in the cationic bolaamphiphile/sds mixed systems. Langmuir 19(3):972–974

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support from the Natural Science Foundation of China (20573067, 20873077) and Key Laboratory of Microgravity, Institute of Mechanics, Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guiying Xu.

Electronic supplementary materials

Below is the link to the electronic supplementary material.

Figure S1

The surface tension isotherm of T1107 at different temperature. (DOC 46 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gong, H., Xu, G., Shi, X. et al. Comparison of aggregation behaviors between branched and linear block polyethers: MesoDyn simulation study. Colloid Polym Sci 288, 1581–1592 (2010). https://doi.org/10.1007/s00396-010-2294-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-010-2294-7

Keywords

Navigation