Skip to main content
Log in

β/α Transformation of β-polypropylene during tensile deformation: effect of crystalline morphology

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

In this work, the β/α transformation of β-nucleated iPP at different tensile strains has been analyzed. The crystalline morphology of iPP is controlled by the content of β-phase nucleating agent (β-NA), namely, well-developed β-spherulites induced by critical content of β-NA and bundle-like morphology without distinctly developed spherulites by supercritical content of β-NA. It is interesting to observe that the crystalline morphology of β-iPP exhibits great influence on the β/α transformation process during deformation. For well-developed β-spherulites, the content of β-iPP increases at relatively low tensile strain and then decreases gradually with the further increase of tensile strain. However, for bundle-like morphology, the content of β-iPP decreases monotonically with the increase of tensile strain. More important, well-developed β-spherulites, which have integrated crystalline structures, exhibit much smaller degree of β/α transformation as compared with bundle-like morphology at the same tensile strain, leading to more β-iPP maintaining and participating in the deformation process at high strain and consequently, resulting in better ductility. The results of this study further show the importance of crystalline morphology in determining the ductility of β-nucleated iPP on the one hand. On the other hand, this work provides the illuminating explanation for the reason why the well-developed β-spherulites exhibits more excellent ductility compared with the bundle-like morphology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Binsbergen FL, De Lange BGM (1968) Morphology of polypropylene crystallized from the melt. Polymer 9:23–40

    Article  CAS  Google Scholar 

  2. Lotz B, Wittmann JC, Lovinger AJ (1996) Structure and morphology of poly(propylenes): a molecular analysis. Polymer 37:4979–4992

    Article  CAS  Google Scholar 

  3. Leugering HJ, Kirsch GA (1973) Effect of crystallization from oriented melts on crystal structure of isotactic polypropylene. Makromol Chem 33:17–23

    Article  CAS  Google Scholar 

  4. Meille SV, Bruckner S, Porzio W (1990) γ-Isotactic polypropylene. A structure with nonparallel chain axes. Macromolecules 23:4114–4121

    Article  CAS  Google Scholar 

  5. Mezghani K, Phillips PJ (1998) The γ-phase of high molecular weight isotactic polypropylene: III. The equilibrium melting point and the phase diagram. Polymer 39:3735–3744

    Article  CAS  Google Scholar 

  6. Foresta T, Piccarolo S, Goldbeck-Wood G (2001) Competition between α and γ phases in isotactic polypropylene: effects of ethylene content and nucleating agents at different cooling rates. Polymer 42:1167–1176

    Article  CAS  Google Scholar 

  7. O’Kane WJ, Young RJ, Bras W, Derbyshire GE, Mant GR (1994) Simultaneous SAXS/WAXS and DSC analysis of the melting and recrystallization behaviour of quenched polypropylene. Polymer 35:1352–1358

    Article  Google Scholar 

  8. Coulon G, Castelein G, G’Sell C (1999) Scanning force microscopic investigation of plasticity and damage mechanisms in polypropylene spherulites under simple shear. Polymer 40:95–110

    Article  CAS  Google Scholar 

  9. Aboulfaraj M, G’Sell C, Ulrich B, Dahoun A (1995) In situ observation of the plastic deformation of polypropylene spherulites under uniaxial tension and simple shear in the scanning electron microscope. Polymer 36:731–742

    Article  CAS  Google Scholar 

  10. Tordjeman Ph, Robert C, Marin G, Gerard P (2001) The effect of α, β crystalline structure on the mechanical properties of polypropylene. Eur Phys J E 4:459–465

    Article  CAS  Google Scholar 

  11. Varga J, Ehrenstein GW (1997) High-temperature hedritic crystallization of the β-modification of isotactic polypropylene. Colloid Polym Sci 275:511–519

    Article  CAS  Google Scholar 

  12. Trifonova D, Varga J, Ehrenstein GW, Vancso GJ (2000) Features of the hedritic morphology of β-isotactic polypropylene studied by atomic force microscopy. J Polymer Sci, Polym Phys 38:672–681

    Article  Google Scholar 

  13. Karger-Kocsis J, Varga J (1996) Effects of β-α transformation on the static and dynamic tensile behavior of isotactic polypropylene. J Appl Polym Sci 62:291–300

    Article  CAS  Google Scholar 

  14. Varga J (2002) β-Modification of isotactic polypropylene: preparation, structure, processing, properties, and application. J Macromol Sci Part B Phys 41:1121–1171

    Article  Google Scholar 

  15. Henning S, Adhikari R, Michler GH, Baltá Calleja FJ, Karger-Kocsis J (2004) Micromechanical mechanisms for toughness enhancement in-modified polypropylene. Macromol Symp 214:157–172

    Article  CAS  Google Scholar 

  16. Chen HB, Karger-Kocsis J, Wu JS, Varga J (2002) Fracture toughness of α- and β-phase polypropylene homopolymers and random- and block-copolymers. Polymer 43:6505–6514

    Article  CAS  Google Scholar 

  17. Karger-Kocsis J, Varga J, Ehrenstein GW (1997) Comparison of the fracture and failure behavior of injection-molded α- and β-polypropylene in high-speed three-point bending tests. J Appl Polym Sci 64:2057–2066

    Article  CAS  Google Scholar 

  18. Varga J, Karger-Kocsis J (1996) Rules of supermolecular structure formation in sheared isotactic polypropylene melts. J Polym Sci, Part B, Polym Phys 34:657–670

    Article  CAS  Google Scholar 

  19. Somani RH, Hsiao BS, Nogales A, Fruitwala H, Srinivas S, Tsou AH (2001) Structure development during shear flow induced crystallization of i-PP: in situ wide-angle X-ray diffraction study. Macromolecules 34:5902–5909

    Article  CAS  Google Scholar 

  20. Huo H, Jiang SC, An LJ, Feng JC (2004) Influence of shear on crystallization behavior of the β Phase in isotactic polypropylene with β-nucleating agent. Macromolecules 37:2478–2483

    Article  CAS  Google Scholar 

  21. Fujiwara Y (1975) Das doppelschmelzverhalten derβ-Phase des isotaktischen polypropylens. Colloid Polym Sci 253:273–282

    Article  CAS  Google Scholar 

  22. Leugering HJ (1967) Effect of crystal structure and over structure on some properties of polypropylene. Makromol Chem 109:204–216

    Article  CAS  Google Scholar 

  23. Shi G, Zhang X, Qiu Z (1992) Crystallization kinetics of β-phase poly(propylene). Makromol Chem 193:583–591

    Article  CAS  Google Scholar 

  24. Varga J, Mudra I, Ehrenstein GW (1999) Highly active thermally stable β-nucleating agents for isotactic polypropylene. J Appl Polym Sci 74:2357–2368

    Article  CAS  Google Scholar 

  25. Ikeda N, Kobayashi T, Killough L (1996) A novel beta-nucleator for polypro-pylene. Polypropylene ‘96 World Congress, Zurich, Switzerland, Sept 18–20

  26. Mathieu C, Thierry A, Wittmann JC, Lotz B (2002) Specificity and versatility of nucleating agents toward isotactic polypropylene crystal phases. J Polym Sci, Part B: Polym Phys 40:2504–2515

    Article  CAS  Google Scholar 

  27. Menyhárd A, Varga J, Molnár G (2006) Comparison of different-nucleators for isotactic polypropylene, characterisation by DSC and temperature-modulated DSC (TMDSC) measurements. J Thermal Anal Calorimetry 83:625–630

    Article  Google Scholar 

  28. Krache R, Benavente R, López-Majada JM, Pereña JM, Cerrada ML, Pérez E (2007) Competition between α, β, and γ polymorphs in a β-nucleated metallocenic isotactic polypropylene. Macromolecules 40:6871–6878

    Article  CAS  Google Scholar 

  29. Zhao SC, Cai Z, Xin Z (2008) A highly active novel β-nucleating agent for isotactic polypropylene. Polymer 49:2745–2754

    Article  CAS  Google Scholar 

  30. Dong M, Su ZQ, Guo ZX, Yu J (2008) Study of the crystallization behaviors of isotactic polypropylene with sodium benzoate as a specific versatile nucleating agent. J Polym Sci Part B, Polym Phys 46:1183–1192

    Article  CAS  Google Scholar 

  31. Dong M, Guo ZX, Yu J, Su ZQ (2008) Crystallization behavior and morphological development of isotactic polypropylene with an aryl amide derivative as β-form nucleating agent. J Polym Sci Part B, Polym Phys 46:1725–11733

    Article  CAS  Google Scholar 

  32. Yi QF, Wen XJ, Dong JY, Han CC (2008) A novel effective way of comprising a β-nucleating agent in isotactic polypropylene (i-PP): polymerized dispersion and polymer characterization. Polymer 49:5053–5063

    Article  CAS  Google Scholar 

  33. Luo F, Geng CZ, Wang K, Deng H, Chen F, Fu Q, Na B (2009) New understanding in tuning toughness of β-Polypropylene: the role of β-nucleated crystalline morphology. Macromolecules 42:9325–9331

    Article  CAS  Google Scholar 

  34. Bai HW, Wang Y, Liu L, Zhang JH, Han L (2008) Nonisothermal crystallization behaviors of polypropylene with α/β nucleating agents. J Polym Sci, Part B, Polym Phys 46:1853–1867

    Article  CAS  Google Scholar 

  35. Bai HW, Wang Y, Zhang ZJ, Han L, Li YL, Liu L, Zhou ZW, Men YF (2009) Influence of annealing on microstructure and mechanical properties of isotactic polypropylene with β-Phase nucleating agent. Macromolecules 42:6647–6655

    Article  CAS  Google Scholar 

  36. Kotek J, Raab M, Baldrian J, Grellmann W (2002) The effect of specific β-nucleation on morphology and mechanical behavior of isotactic polypropylene. J Appl Polym Sci 85:1174–1184

    Article  CAS  Google Scholar 

  37. Kotek J, Kelnar I, Baldrian J, Raab M (2004) Tensile behaviour of isotactic polypropylene modified by specific nucleation and active fillers. Eur Polym J 40:679–684

    Article  CAS  Google Scholar 

  38. Ščudla J, Raab M, Eichhorn KJ, Strachota A (2003) Formation and transformation of hierarchical structure of β-nucleated polypropylene characterized by X-ray diffraction, differential scanning calorimetry and scanning electron microscopy. Polymer 44:4655–4664

    Article  Google Scholar 

  39. Varga J, Menyhárd A (2007) Effect of solubility and nucleating duality of N, N′-dicyclohexyl-2, 6-naphthalenedicarboxamide on the supermolecular structure of isotactic polypropylene. Macromolecules 40:2422–2431

    Article  CAS  Google Scholar 

  40. Karger-Kocsis J (1996) How does “phase transformation toughening work” in semicrystalline polymers. Polym Eng Sci 36:203–210

    Article  CAS  Google Scholar 

  41. Karger-Kocsis J (1996) Towards phase transformation toughened semicrystalline polymers. Polym Bull 36:119–124

    Article  CAS  Google Scholar 

  42. Varga J, Tóth F (1986) Annealing of the β-modification of polypropylene. Makromol Chem Macromol Symp 5:213–223

    CAS  Google Scholar 

  43. Riekel C, Karger-Kocsis J (1999) Structural investigation of the phase transformation in the plastic zone of a β-phase isotactic polypropylene by synchrotron radiation microdiffraction. Polymer 40:541–545

    Article  CAS  Google Scholar 

  44. Li JX, Cheung WL (1998) On the deformation mechanisms of β-polypropylene: 1. Effect of necking on β-phase PP crystals. Polymer 39:6935–6940

    Article  CAS  Google Scholar 

  45. Li JX, Cheung WL, Chan CM (1999) On deformation mechanisms of β-polypropylene 2. Changes of lamellar structure caused by tensile load. Polymer 40:2089–2102

    Article  CAS  Google Scholar 

  46. Li JX, Cheung WL, Chan CM (1999) On deformation mechanisms of β-polypropylene 3. Lamella structures after necking and cold drawing. Polymer 40:3641–3656

    Article  CAS  Google Scholar 

  47. Xu W, Martin DC, Arruda EM (2005) Finite strain response, microstructural evolution and β → α phase transformation of crystalline isotactic polypropylene. Polymer 46:455–470

    Article  CAS  Google Scholar 

  48. Lezak E, Bartczak Z, Galeski A (2006) Plastic deformation behavior of β-phase isotactic polypropylene in plane-strain compression at room temperature. Polymer 47:8562–8574

    Article  CAS  Google Scholar 

  49. Lezak E, Bartczak Z (2008) Plastic deformation behavior of β phase isotactic polypropylene in plane-strain compression at elevated temperatures. J Polym Sci, Part B, Polym Phys 46:92–108

    Article  CAS  Google Scholar 

  50. Machado G, Kinast EJ, Scholten JD, Thompson A, Vargas TD, Teixeira SR, Samios D (2009) Morphological and crystalline studies of isotactic polypropylene plastically deformed and evaluated by small-angle X-ray scattering, scanning electron microscopy and X-ray diffraction. Euro Polym J 45:700–713

    Article  CAS  Google Scholar 

  51. Li JX, Cheung WL, Jia D (1999) A study on the heat of fusion of β-polypropylene. Polymer 40:1219–1222

    Article  CAS  Google Scholar 

  52. Turner Jones A, Aizlewood JM, Beckett DR (1964) Crystalline forms of isotactic polypropylene. Makromol Chem 75:134–158

    Article  CAS  Google Scholar 

  53. Olley RH, Bassett DC (1982) An improved permanganic etchant for polyolefines. Polymer 23:1707–1710

    Article  CAS  Google Scholar 

  54. Hong K, Rastogi A, Strobl G (2004) A model treating tensile deformation of semicrystalline polymers: Quasi-static stress–strain relationship and viscous stress determined for a sample of polyethylene. Macromolecules 37:10165–10173

    Article  CAS  Google Scholar 

  55. Kontou E, Farasoglou P (1998) Determination of the true stress–strain behaviour of polypropylene. J Mater Sci 33:147–153

    Article  CAS  Google Scholar 

  56. Menyhárd A, Varga J (2006) The effect of compatibilizers on the crystallisation, melting and polymorphic composition of β-nucleated isotactic polypropylene and polyamide 6 blends. Eur Polym J 42:3257–3268

    Article  Google Scholar 

  57. Strobl G (2000) From the melt via mesomorphic and granular crystalline layers to lamellar crystallites: a major route followed in polymer crystallization. Eur Phys J E 3:165–183

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors express their sincere thanks to the National Natural Science Foundation of China (50973090), Program for New Century Excellent Talents in University (NCET-08-0823) and the Sichuan Youthful Science and Technology Foundation (07ZQ026-003; People’s Republic of China) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, X., Wu, H., Huang, T. et al. β/α Transformation of β-polypropylene during tensile deformation: effect of crystalline morphology. Colloid Polym Sci 288, 1539–1549 (2010). https://doi.org/10.1007/s00396-010-2275-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-010-2275-x

Keywords

Navigation