Skip to main content
Log in

Role of surface modification of colloidal CdSe quantum dots on the properties of hybrid organic–inorganic nanocomposites

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

In this work, tri-octyl phosphine/tri-octyl phosphine oxide (TOPO)-capped cadmium selenide (CdSe) quantum dots (QDs) of varied sizes (5–9 nm), prepared by varying the input Cd:Se precursor ratio using chemical route, were dispersed in conducting polymer matrices viz. poly[2-methoxy, 5-(2-ethyl-hexyloxy)-1,4-phenylene vinylene] (MEH-PPV) and poly(3-hexylthiophene) (P3HT). By using a binary solvent mixture (pyridine–chloroform), homogeneous dispersion of CdSe nanocrystals in polymers (MEH-PPV, P3HT) could be realized. The properties of the resulting dispersions could be tailored by the composition and concentration of QDs in polymer. The emission and structural properties of polymer–CdSe nanocomposites are found to be dependent on the crystallite size and morphology of CdSe nanocrystallites. An effective quenching of photoluminescence emission in the polymer nanocomposite was observed for smaller CdSe quantum dots (size ∼6 nm) as compared to larger CdSe quantum dots (size ∼9 nm), thus ensuring efficient charge transfer process across the polymer–CdSe interface in the former case. The incomplete quenching, particularly for MEH-PPV:CdSe nanocomposites, could be as a result of insufficient coverage of polymers on the surface of CdSe nanocrystallites, mainly due to phase segregation for TOPO-stripped CdSe nanocrystallites. The superior morphology and optical properties of polymer nanocomposite (P3HT:CdSe QDs) could play a pivotal role for the realization of effective charge separation and transport in hybrid solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Saunders BR, Turner ML (2008) Adv Colloid Interface Sci 138:1

    Article  CAS  Google Scholar 

  2. Yen BKH, Scott NE, Jensen KF, Bawendi MG (2003) Adv Mater 15:1858

    Article  CAS  Google Scholar 

  3. Noone KM, Anderson NC, Horwitz NE, Munro AM, Kulkarni AP, Ginger DS (2009) ACS Nano 3:1345

    Article  CAS  Google Scholar 

  4. Peng XG, Manna L, Yang WD, Wickham J, Scher E, Kadavamich A, Alivisatos AP (2000) Nature 404:59

    Article  CAS  Google Scholar 

  5. Sun S, Sariciftci NS (2005) Organic photovoltaics: mechanism, materials and devices, CRC Press, Boca Raton, FL

  6. Aldakov AD, Chandezon F, Bettignies R, Firon M, Reiss P, Pron A (2007) Eur Phys J Appl Phys 36:261

    Article  Google Scholar 

  7. Wang S, Yang S, Yang C, Li Z, Wang J, Ge W (2000) J Phys Chem B 104:11853

    Article  CAS  Google Scholar 

  8. Pavel FM, Mackay RA (2000) Langmuir 16:8568

    Article  CAS  Google Scholar 

  9. Sharma H, Sharma SN, Singh G, Shivaprasad SM (2007) J Nanosci Nanotechnol 7:1953

    Article  CAS  Google Scholar 

  10. Sharma H, Sharma SN, Singh S, Kishore R, Singh G, Shivaprasad SM (2007) Appl Surf Sci 253:5325

    Article  CAS  Google Scholar 

  11. Wagner CD, Riggs WM, Davis LE, Moulder JF, Muilenberg GE (1979) Handbook of X-ray Photoelectron Spectroscopy published by Perkin Elmer Corporation Physical Electronic Division Eden Prairie Minnesota 55344

  12. Murray C, Norris D, Bawendi M (1993) J Am Chem Soc 115:8706

    Article  CAS  Google Scholar 

  13. Kortan AR, Hull R, Opila RL, Bawendi MG, Steigerwald ML, Carroll PJ, Brus LE (1990) J Am Chem Soc 112:1327

    Article  CAS  Google Scholar 

  14. Guyot-Sionnest P, Shim M, Matranga C, Hines M (1999) Phys Rev B 60:R2181

    Article  CAS  Google Scholar 

  15. Malik MA, Revaprasadu N, Brien PO (2001) Chem Mater 13:913

    Article  CAS  Google Scholar 

  16. Klug HP, Alexander LE (1954) X-ray Diffraction Procedures. Wiley, New York

    Google Scholar 

  17. Mattaoussi H, Cumming AW, Murray CB, Bawendi MG, Ober R (1998) Phys Rev B 58:7850

    Article  Google Scholar 

  18. Etchberry A, Iranzo-Marin F, Novakovic E, Triboulet R, Debiemme-Chouvy C (1998) J Cryst Growth 184/185:213

    Article  Google Scholar 

  19. Nguyen TP, Ip J, Renaud C, Huang CH, Guillen C, Herrero J (2006) Appl Surf Sci 252:8388

    Article  CAS  Google Scholar 

  20. Lu MD, Yang SM (2009) J Coll Int Sci 333:128

    Article  CAS  Google Scholar 

  21. Liu P, Su Z (2005) Mater Chem Phys 94:412

    Article  CAS  Google Scholar 

  22. Brinkmann M, Aldakov D, Chandezon F (2007) Adv Mater 19:3819

    Article  CAS  Google Scholar 

  23. Greenham NC, Peng X, Alivisatos AP (1996) Phys Rev B 54:17628

    Article  CAS  Google Scholar 

  24. Kim SJ, Kim WJ, Sahoo Y, Cartwright AN, Prasad PN (2008) Appl Phys Lett 92:031107

    Article  Google Scholar 

  25. Koleilat GI, Levina L, Shukla H, Myrskog SH, Hinds S, Pattantyus-Abraham AG, Sargent EH (2008) ACS Nano 2:833

    Article  CAS  Google Scholar 

  26. Luther JM, Law M, Beard MC, Song Q, Reese MO, Ellingson RJ, Nozik AJ (2008) Nano Lett 8:3488

    Article  CAS  Google Scholar 

  27. Kumar Umesh, Sharma SN, Singh VN, Mehta BR, Kakkar R (2009) Proc. of India–Japan Workshop on Biomolecular Electronics and Organic Nanotechnology for Environment Preservation (IJWBME 2009) Organized by Department of Science and Technology Center on Biomolecular Electronics (NPL, New Delhi) & Department of Biological Functions & Engineering, Graduate Shool of Life Science Systems Engineering, Kitakyushu, Kyushu Institute of Technology, Japan and held at National Physical Laboratory (NPL), New Delhi, India during 17–20 December 2009, P83

Download references

Acknowledgements

We thank Director NPL for providing the facilities for the successful completion of this research work. Umesh Kumar and Kusum Kumari gratefully acknowledges UGC and CSIR (New Delhi) for their SRF fellowship, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shailesh N. Sharma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, U., Kumari, K., Sharma, S.N. et al. Role of surface modification of colloidal CdSe quantum dots on the properties of hybrid organic–inorganic nanocomposites. Colloid Polym Sci 288, 841–849 (2010). https://doi.org/10.1007/s00396-010-2205-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-010-2205-y

Keywords

Navigation