Skip to main content
Log in

Temperature-sensitive behaviour of poly(glycidol)-b-poly(N-isopropylacrylamide) block copolymers

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Temperature-sensitive poly(glycidol)-b-poly(N-isopropylacrylamide) block copolymers (PGl55PNIPAAmy) were synthesised and their aqueous solutions investigated by different methods including differential scanning calorimetry (DSC), UV-VIS spectroscopy as well as dynamic and static light scattering. The cloud point temperature (T c) depended on the composition of the investigated block copolymers and increased with decreasing length of the PNIPAAm block in PGl55PNIPAAmy copolymers. In contrast, the enthalpy of phase separation of PNIPAAm segments measured by DSC decreased with decreasing length of the PNIPAAm block in the polymer. These findings can be correlated with the behaviour of homo-PNIPAAm with similar molecular weights indicating that the influence of PGl on the local environment and phase separation of PNIPAAm chains is similar to the influence observed for PNIPAAm chains bearing different low molecular weight end group. Using DLS measurement, it was shown that the aggregation process depended on the PGl/PNIPAAm block ratio. If the PGl/PNIPAAm ratio was low, stable core-shell aggregates were formed. In contrast, the tendency to formation of large unstable, loose aggregates was observed for copolymers with high PGl/PNIPAAm ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Liu M, Fu Z, Wang Q, Xu J, Fan Z (2008) Eur Polym J 44:4122–4128

    Article  CAS  Google Scholar 

  2. Bonné T, Lüdkte K, Jordan R, Štěpánek P, Papadakis C (2004) Colloid Polym Sci 282:833–843

    Article  Google Scholar 

  3. Wang D, Liu J, Ye G, Wang X (2009) Polymer 50:418–427

    Article  CAS  Google Scholar 

  4. Albrecht K, Mourran A, Möller M (2006) Adv Polym Sci 200:57–70

    Article  CAS  Google Scholar 

  5. Rapoport N (2007) Prog Polym Sci 32:962–990

    Article  CAS  Google Scholar 

  6. Glass R, Arnold M, Blümmel J, Küller A, Möller M, Spatz JP (2003) Adv Funct Mater 13:569–575

    Article  CAS  Google Scholar 

  7. Gorzolnik B, Mela P, Möller M (2006) Nanotechnology 17:5027–5032

    Article  CAS  Google Scholar 

  8. Cohen Stuart MA (2008) Colloid Polym Sci 286:855–864

    Article  CAS  Google Scholar 

  9. Dimitrov I, Trzebicka B, Müller A, Dworak A, Tsvetanov C (2007) Prog Polym Sci 32:1275–1343

    Article  CAS  Google Scholar 

  10. Liu R, Fraylich M, Saunders B (2009) Colloid Polym Sci 287:627–643

    Article  CAS  Google Scholar 

  11. Gohy JF, Willet N, Varshney S, Zhang JX, Jerome R (2001) Angew Chem Int Ed 40:3214–3216

    Article  CAS  Google Scholar 

  12. Bajpai AK, Shukla KS, Bhanu S, Kankane S (2008) Prog Polym Sci 33:1088–1118

    Article  CAS  Google Scholar 

  13. Chen W, Wei H, Li S, Feng J, Nie J, Zhang X, Zhuo R (2008) Polymer 49:3965–3972

    Article  CAS  Google Scholar 

  14. Tang T, Castelletto V, Parras P, Hamley I, King S, Roy D, Perrier S, Hoogenboom R, Schubert U (2006) Macromol Chem Phys 207:1718–1726

    Article  CAS  Google Scholar 

  15. Schild HG, Tirrel DA (1990) J Phys Chem 94:4352–4356

    Article  CAS  Google Scholar 

  16. Kuckling D (2009) Colloid Polym Sci 287:881–891

    Article  CAS  Google Scholar 

  17. Schild HG (1992) Prog Polym Sci 17:163–249

    Article  CAS  Google Scholar 

  18. Topp MD, Dijkstra PJ, Talsma H, Feijen J (1997) Macromolecules 30:8518–8520

    Article  CAS  Google Scholar 

  19. Virtanen J, Holappa S, Lemmetyinen H, Tenhu H (2002) Macromolecules 35:4763–4769

    Article  CAS  Google Scholar 

  20. Tong Z, Zeng F, Zheng X (1999) Macromolecules 32:4488–4490

    Article  CAS  Google Scholar 

  21. Boutris C, Chatzi E, Kiparissides C (1997) Polymer 38:2567–2570

    Article  CAS  Google Scholar 

  22. Xia Y, Burke N, Stoever H (2006) Macromolecules 39:2275–2283

    Article  CAS  Google Scholar 

  23. Huber S, Hutter N, Jordan R (2008) Colloid Polym Sci 286:1653–1661

    Article  CAS  Google Scholar 

  24. Kuckling D, Harmon ME, Frank CW (2002) Macromolecules 35:6377–6383

    Article  CAS  Google Scholar 

  25. Salgado-Rodríguez R, Licea-Claverie A, Arndt KF (2004) Europ Polym J 40:1931–1946

    Article  Google Scholar 

  26. Mendrek S, Mendrek A, Adler HJ, Walach W, Dworak A, Kuckling D (2008) J Polym Sci, Part A: Polym Chem 46:2488–2499

    Article  CAS  Google Scholar 

  27. Tokar R, Kubisa P, Penczek S, Dworak A (1994) Macromolecules 27:320–322

    Article  CAS  Google Scholar 

  28. Dworak A, Trzebicka B, Utrata A, Walach W (2003) Polym Bull 50:47–54

    Article  CAS  Google Scholar 

  29. Tiktopulo EI, Bychkova VE, Ricka J, Ptitsyn OB (1994) Macromolecules 27:2879–2882

    Article  CAS  Google Scholar 

  30. Shibayama M, Mizutani S, Nomura S (1996) Macromolecules 29:2019–2024

    Article  CAS  Google Scholar 

  31. Lowe T, Vitrenen J, Tenhu H (1999) Langmuir 15:4259–4265

    Article  CAS  Google Scholar 

  32. Cheng H, Schen L, Wu C (2006) Macromolecules 36:2325–2329

    Article  Google Scholar 

  33. Zhang Y, Wu C, Fang Q, Zhang Y (1996) Macromolecules 29:2494–2497

    Article  CAS  Google Scholar 

  34. Wu C, Wu P, Ma X (1996) J Polym Sci, Part B: Polym Phys 34:221–227

    Article  CAS  Google Scholar 

  35. Qiu X, Wu C (1997) Macromolecules 30:7921–7926

    Article  CAS  Google Scholar 

  36. Schilli C, Zhang M, Rizzardo E, Thang S, Chong Y, Edwards K, Karlsson G, Müller A (2004) Macromolecules 37:7861–7866

    Article  CAS  Google Scholar 

  37. Burchard W (1999) Adv Polym Sci 143:113–194

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors appreciate the support of the European Graduate College “Advanced Polymer Materials” (EGC 720) founded by Deutsche Forschungsgemeinschaft (DFG). The authors are also thankful to Prof. Dr. K.-F. Arndt (Fachrichtung Chemie und Lebensmittelchemie, Technische Universität Dresden) for the use of DLS and SLS system as well as to Dr. A. Henke and Dr. R. Hoogenboom (DWI an der RWTH Aachen) for help in interpretation of results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk Kuckling.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mendrek, S., Mendrek, A., Adler, HJ. et al. Temperature-sensitive behaviour of poly(glycidol)-b-poly(N-isopropylacrylamide) block copolymers. Colloid Polym Sci 288, 777–786 (2010). https://doi.org/10.1007/s00396-010-2203-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-010-2203-0

Keywords

Navigation