Skip to main content
Log in

Effect of ionic van der Waals forces on the diffuse potential of model colloids

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

In this work, the role of ionic dispersion forces in specific ion effects is evaluated through Monte Carlo simulations in the primitive model. More specifically, we assess the effect of such forces on the diffuse potential, since this property is essential to understand the electrokinetic behavior of colloids. In this way, ion specificity arises naturally since ion dispersion forces depend on ionic polarizability, which differs for ions with the same valence. This property is included in the primitive model by means of the Lifshitz theory. The results for different ions are summarized with the help of a nondimensional parameter characterizing the relative weight of ionic van der Waals interactions. Our data reveal that for small ions with high polarizability the ionic dispersion forces can considerably contribute to the specificity of the diffuse potential. In any case, the specific ion effects due to ion polarizability are strongly influenced by ion size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Stern O (1924) The theory of the electrolytic double shift. Z Elektrochem 30:508–516

    CAS  Google Scholar 

  2. Biesheuvel PM, van Soestbergen M (2007) Counterion volume effects in mixed electrical double layers. J Colloid Interface Sci 316:490–499

    Article  CAS  Google Scholar 

  3. Fawcett WR, Smagala TG (2006) New developments in the theory of the diffuse double layer. Langmuir 22:10635–10642

    Article  CAS  Google Scholar 

  4. Vlachy V (1999) Ionic effects beyond Poisson–Boltzmann theory. Annu Rev Phys Chem 50:145–165

    Article  CAS  Google Scholar 

  5. Quesada-Pérez M, González-Tovar E, Martín-Molina A, Lozada-Cassou M, Hidalgo-Álvarez R (2003) Overcharging in colloids: Beyond the Poisson–Boltzmann approach. ChemPhysChem 4:235–248

    Article  Google Scholar 

  6. Collins KD, Washabaugh MW (1985) The Hofmeister effect and the behavior of water at interfaces. Q Rev Biophys 18:323–422

    Article  CAS  Google Scholar 

  7. Collins KD (1997) Charge density-dependent strength of hydration and biological structure. Biophys J 72:65–76

    Article  CAS  Google Scholar 

  8. Collins KD (2006) Ion hydration: Implications for cellular function, polyelectrolytes, and protein crystallization. Biophys Chem 119:271–281

    Article  CAS  Google Scholar 

  9. Ninham BW, Yaminsky V (1997) Ion binding and ion specificity: The Hofmeister effect and Onsager and Lifshitz theories. Langmuir 13:2097–2108

    Article  CAS  Google Scholar 

  10. Ottewill RH, Shaw JN (1968) An electrophoretic investigation of behavior of monodisperse polystyrene latices in solutions of lanthanum neodymium and thorium nitrates. J Colloid Interface Sci 26:110

    Article  CAS  Google Scholar 

  11. Quesada-Pérez M, González-Tovar E, Martín-Molina A, Lozada-Cassou M, Hidalgo-Álvarez R (2005) Ion size correlations and charge reversal in real colloids. Colloid Surf A 267:24–30

    Article  Google Scholar 

  12. Quesada-Pérez M, Martín-Molina A, Hidalgo-Álvarez R (2005) Simulation of electric double layers undergoing charge inversion: mixtures of mono- and multivalent ions. Langmuir 21:9231–9237

    Article  Google Scholar 

  13. Grosberg AY, Nguyen TT, Shklovskii BI (2002) The physics of charge inversion in chemical and biological systems. Rev Mod Phys 74:329–345

    Article  CAS  Google Scholar 

  14. Levin Y (2002) Elecrostatic correlations: from plasma to biology. Rep Prog Phys 65:1577

    Article  CAS  Google Scholar 

  15. Bostrom M, Williams DRM, Ninham BW (2001) Specific ion effects: why DLVO theory fails for biology and colloid systems. Phys Rev Lett 87:168103

    Article  CAS  Google Scholar 

  16. Bostrom M, Williams DRM, Ninham BW (2001) Surface tension of electrolytes: specific ion effects explained by dispersion forces. Langmuir 17:4475–4478

    Article  Google Scholar 

  17. Bostrom M, Williams DRM, Ninham BW (2002) Ion specificity of micelles explained by ionic dispersion forces. Langmuir 18:6010–6014

    Article  Google Scholar 

  18. Tavares FW, Brakto D, Blanch HW, Prausnitz JM (2004) Ion-specific effects in the colloid–colloid or protein–protein potential of mean force: Role of salt–macroion van der Waals interactions. J Phys Chem B 108:9228–9235

    Article  CAS  Google Scholar 

  19. Boström M, Tavares FW, Ninham BW, Prausnitz JM (2006) Effect of salt identity on the phase diagram for a globular protein in aqueous electrolyte solution. J Phys Chem B 110:24757–24760

    Article  Google Scholar 

  20. Israelachvili JN (1992) Intermolecular and surface forces. Academic Press, London

    Google Scholar 

  21. Quesada-Pérez M, Martín-Molina A, Hidalgo-Álvarez R (2004) Simulation of electric double layers with multivalent counterions: ion size effect. J Chem Phys 121:8618–8626

    Article  Google Scholar 

  22. Ravindran S, Wu J (2005) Ion size effect on colloidal forces within the primitive model. Condens Matter Phys 8:377–388

    Google Scholar 

  23. Martín-Molina A, Ibarra-Armenta JG, Quesada-Pérez M (2009) Effect of ion dispersion forces on the electric double layer of colloids: a Monte Carlo simulation study. J Phys Chem B 113:2414–2421

    Article  Google Scholar 

  24. Torrie GM, Valleau JP (1980) Electrical double layers 1. Monte-Carlo study of a uniformly charged surface. J Chem Phys 73:5807–5816

    Article  CAS  Google Scholar 

  25. Gulbrand L, Jönsson B, Wennerström H, Linse P (1984) Electric double layer forces. A Monte Carlo study. J Chem Phys 80:2221–2228

    Article  Google Scholar 

  26. Dobrynin AV (2008) Theory and simulations of charged polymers: from solution properties to polymeric nanomaterials. Curr Opin Colloid Interface Sci 13:376–388

    Article  CAS  Google Scholar 

  27. Linse P (2005) Simulation of charged colloids in solution. Adv Polym Sci 185:111–162

    Article  CAS  Google Scholar 

  28. Dijkstra M (2001) Computer simulations of charge and steric stabilised colloidal suspensions. Curr Opin Colloid Interface Sci 6:372–382

    Article  CAS  Google Scholar 

  29. Boda D, Chan KY, Henderson D (1998) Monte Carlo simulation of an ion–dipole mixture as a model of an electrical double layer. J Chem Phys 109:7362–7371

    Article  CAS  Google Scholar 

  30. Hunter RJ (1981) Zeta potential in colloid science. Principles and applications. Academic Press, London

    Google Scholar 

  31. Lyklema J (1987) Solid/liquid dispersions. Academic Press, London

    Google Scholar 

  32. Grahame DC (1947) The electrical double layer and the theory of electrocapillarity. Chem Rev 41:441–501

    Article  CAS  Google Scholar 

  33. López-León T, Jódar-Reyes AB, Bastos-González D, Ortega-Vinuesa JL (2003) Hofmeister Effects in the stability and electrophoretic mobility of polystyrene latex particles. J Phys Chem B 107:5696–5708

    Article  Google Scholar 

  34. Martín-Molina A, Quesada-Pérez M, Galisteo-González F, Hidalgo-Álvarez R (2003) Looking into overcharging in model colloids through electrophoresis: asymmetric electrolytes. J Chem Phys 118:4183–4189

    Article  Google Scholar 

  35. Roldán-Vargas S, Barnadas-Rodríguez R, Quesada-Pérez M, Estelrich J, Callejas-Fernández J (2009) Surface fractal in liposome aggregation. Phys Rev E 79:011905

    Article  Google Scholar 

  36. Roldán-Vargas S, Martín-Molina A, Quesada-Pérez M, Barnadas-Rodríguez R, Estelrich J, Callejas-Fernández J (2007) Aggregation of liposomes induced by calcium: a structural and kinetic study. Phys Rev E 75:021912

    Article  Google Scholar 

  37. Faraudo J, Travesset A (2007) Phosphatidic acid domains in membranes: effect of divalent counterions. Biophys J 92:2806–2818

    Article  CAS  Google Scholar 

  38. Faraudo J, Travesset A (2007) Electrostatics of phosphatidic acid monolayers: insights from computer simulations. Colloid Surf A 300:287–292

    Article  CAS  Google Scholar 

  39. Lima ERA, Horinek D, Netz RR, Biscaia EC, Tavares FW, Kunz W, Boström M (2008) Specific ion adsorption and surface forces in colloid science. J Phys Chem B 112:1580–1585

    Article  CAS  Google Scholar 

  40. Netz RR (2004) Water and ions at interfaces. Curr Opin Colloid Interface Sci 9:192–197

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to “Ministerio de Educación y Ciencia, Plan Nacional de Investigación, Desarrollo e Innovación Tecnológica (I + D + i),” project MAT2009-13155-C04-04, “Consejería de Innovación, Ciencia y Empresa de la Junta de Andalucía” projects P07-FQM-02496, P07-FQM-02517, and FQM-4698, as well as the European Regional Development Fund for financial support. A.M.-M. also thanks the “Programa Ramón y Cajal, 2005, Ministerio de Educación y Ciencia–Fondo Social Europeo (RYC-2005-000829).”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Quesada-Pérez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Quesada-Pérez, M., Hidalgo-Álvarez, R. & Martín-Molina, A. Effect of ionic van der Waals forces on the diffuse potential of model colloids. Colloid Polym Sci 288, 151–158 (2010). https://doi.org/10.1007/s00396-009-2139-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-009-2139-4

Keywords

Navigation