Skip to main content
Log in

Cooperative magnetophoresis of superparamagnetic colloids: theoretical aspects

  • Short Communication
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

An Erratum to this article was published on 12 July 2011

Abstract

Superparamagnetic colloids have a great practical interest for their applications to processes ranging from biomedicine to environmental waste and pollutants removal. A fast and efficient separation of these particles from the solvent constitutes a key step in the practical implementation of this technology. Recent experiments show fast magnetophoretic separation using relatively small magnetic gradients and high magnetic fields. The mechanism underlying this fast separation was shown to be the reversible aggregation of the magnetic beads induced by the external field. In this paper, we analyze theoretically the physicochemical conditions under which reversible aggregation can be typically achieved, the timescale at which aggregates form, and their shape. In the case of colloids stabilized electrostatically, for reasonable surface potentials (approximately −70 mV), we find that the interaction potential between two superparamagnetic particles displays a barrier with a minimum so that reversible aggregates can form. We also show that the aggregation of particles is quite fast (typically less than a second for usual concentrations) and that lateral aggregation is more energetically stable than tip-to-tip aggregation for long chains (larger than 14 microspheres). This is consistent with experimental observations and very relevant for a fast magnetophoresis since thick aggregates move faster than thin ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Berkovsky BM, Medvedev VF, Krakov MS (1993) Magnetic fluids, engineering applications. Oxford University, Oxford

    Google Scholar 

  2. Taboada E, Solanas R, Rodriguez E, Weissleder R, Roig A (2009) Supercritical-fluid-assisted one-pot synthesis of biocompatible core(g-Fe2O3)/shell(SiO2) nanoparticles as high relaxivity T2-contrast agents for magnetic resonance imaging. Adv Func Mat 19:1–6

    Article  CAS  Google Scholar 

  3. Salgueirino-Marceira V, Correa-Duarte MA, Spasova M, Liz-Marzán LM, Farle M (2006) Composite silica spheres with magnetic and luminiscent functionalities. Adv Func Mat 16:509–514

    Article  Google Scholar 

  4. Bean CP, Livingstone JD (1959) Superparamagnetism. J Appl Phys 30:120S–129S

    Article  CAS  Google Scholar 

  5. Chen DX, Sanchez A, Taboada E, Roig A, Sun N, Gu HC (2009) Size determination of superparamagnetic nanoparticles from magnetization curve. J Appl Phys 105:083924

    Article  CAS  Google Scholar 

  6. Kim M-J, Choa Y-H, Kim DH, Kim KH (2009) Magnetic behaviors of surface modified superparamagnetic magnetite nanoparticles. IEEE Transactions on Magnetism 45:2446–2449

    Article  CAS  Google Scholar 

  7. Berry CC, Curtis ASG (2003) Functionalisation of magnetic nanoparticles for applications in biomedicine. J Phys D Appl Phys 36:R198–R206

    Article  CAS  Google Scholar 

  8. Pankhurst QA, Connolly J, Jones SK, Dobson JJ (2003) Applications of magnetic nanoparticles in biomedicine. Phys D Appl Phys 36:R167–R181

    Article  CAS  Google Scholar 

  9. Wilson RJ, Hu W, Fu CWP, Koh AL, Gaster RS, Earhart CM, Fu A, Heilshorn SC, Sinclair R, Wang SX (2009) Formation and properties of magnetic chains for 100 nm nanoparticles used in separations of molecules and cells. J Magn Magn Mater 321:1452–1458

    Article  CAS  Google Scholar 

  10. Yavuz CT et al (2006) Low-field magnetic separation of monodisperse Fe3O4 nanocrystals. Science 314:964–967

    Article  Google Scholar 

  11. Moeser GD, Roach KA, Green WH, Hatton TA, Laibinis PE (2004) High-gradient magnetic separation of coated magnetic nanoparticles. AIChE J 50:2835–2848

    Article  CAS  Google Scholar 

  12. Senyei A, Widder K, Czerlinski G (1978) J Appl Phys 49(6):3578–3583

    Article  CAS  Google Scholar 

  13. Watson JHP (1973) Magnetic filtration. J Appl Phys 44:4209–4213

    Article  CAS  Google Scholar 

  14. Parker MR (1981) High gradient magnetic separation. Phys Technol 121:263–268

    Article  Google Scholar 

  15. Gerber R, Takayasu M, Friedlaender FJ (1983) Generalization of HGMS theory—the capture of ultrafine particles. IEEE Trans Magn 19:2115–2117

    Article  Google Scholar 

  16. Hatch GP, Stelter RE (2001) Magnetic design considerations for devices and particles used for biological high-gradient magnetic separation (HGMS) systems. J Magn Magn Mater 225:262–276

    Article  CAS  Google Scholar 

  17. Friedman G, Yellen B (2005) Magnetic separation, manipulation and assembly of solid phase in fluids. Curr Opin Colloid Interface Sci 10:158–166

    Article  CAS  Google Scholar 

  18. Gijs MAM (2004) Magnetic bead handling on-chip: new opportunities for analytical applications. Microfluid Nanofluid 1:22–40

    CAS  Google Scholar 

  19. Pamme N (2006) Magnetism and microfluidics. Lab Chip 6:24–38

    Article  CAS  Google Scholar 

  20. Bruus H (2008) Theoretical microfluidics. Oxford University Press, Oxford

    Google Scholar 

  21. Sepmag. SEPMAG Technologies. http://www.sepmag.eu

  22. Estapor Microspheres n12. A technical newsletter published by Merck Chimie SAS, France, Nov 2005 issue, pp 9–10

  23. De Las Cuevas G, Faraudo J, Camacho J (2008) Low-gradient magnetophoresis through field-induced reversible aggregation. J Phys Chem C 112:945–950

    Article  CAS  Google Scholar 

  24. Promislow JHE, Gast AP, Fermigier MJ (1994) Aggregation kinetics of paramagnetic colloidal particles. Chem Phys 102:5492–5498

    Google Scholar 

  25. Martinez-Pedrero F, Tirado-Miranda M, Schmitt A, Callejas-Fernandez J (2006) Forming chainlike filaments of magnetic colloids: the role of the relative strength of isotropic and anisotropic particle interactions. J Chem Phys 125:084706

    Article  CAS  Google Scholar 

  26. Martinez-Pedrero F, Tirado-Miranda M, Schmitt A, Callejas-Fernandez J (2007) Formation of magnetic filaments: a kinetic study. Phys Rev E 76:011405

    Article  CAS  Google Scholar 

  27. Evans DF, Wennerstrom H (1999) The colloidal domain. VCH, New York

    Google Scholar 

  28. Tsouris C, Scott TC (1995) Flocculation of paramagnetic particles in a magnetic field. J Colloid Interf Sci 171:319–330

    Article  CAS  Google Scholar 

  29. Chew WC, Sen PN (1982) Dielectric enhancement due to electrochemical double layer: thin double layer approximation. J Chem Phys 77:4683–4693

    Article  CAS  Google Scholar 

  30. Hidalgo-Alvarez R, Martin A, Fernandez A, Bastos D, Martinez F, de las Nieves FJ (1996) Electrokinetic properties, colloidal stability and aggregation kinetics of polymer colloids. Adv Colloid Interface Sci 67:1–118

    Article  CAS  Google Scholar 

  31. Happel J, Brenner H (1985) Low Reynolds number hydrodynamics. Cambridge University Press, Cambridge

    Google Scholar 

Download references

Acknowledgments

We thank Lluís Martínez and César Rebollo from SEPMAG Technologies for sharing of data and also for endless interesting and useful discussions. We also thank Anna Roig and Elena Taboada (ICMAB-CSIC) for discussions and sharing of experimental data. This work has been supported by the Spanish government grants FIS2006-12296-C02-01, PET2008-02-81-00, and CONSOLIDER-NANOSELECT-CSD2007-00041.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jordi Faraudo.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s00396-011-2454-4.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Faraudo, J., Camacho, J. Cooperative magnetophoresis of superparamagnetic colloids: theoretical aspects. Colloid Polym Sci 288, 207–215 (2010). https://doi.org/10.1007/s00396-009-2107-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-009-2107-z

Keywords

Navigation