Skip to main content
Log in

Dielectric relaxation processes and ionic conduction behaviour in poly(ethylene oxide)–montmorillonite clay nanocomposite aqueous colloidal suspensions

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The relative complex dielectric function, electric modulus, alternating current (ac) electrical conductivity and complex impedance spectra of poly(ethylene oxide) (PEO)–montmorillonite (MMT) clay aqueous colloidal suspension (hydrocolloids) were investigated over the frequency range 20 Hz to 1 MHz at 27 °C. The relaxation time corresponding to electrode polarisation and Maxwell–Wagner polarisation processes (ionic conduction) were determined from these plots. The direct current (dc) electrical conductivity is evaluated from the fitting of real part ac conductivity data to the Jonscher power law. A correlation of increase in dc conductivity and decrease of ionic conduction relaxation time with increase of clay concentration is discussed considering intercalation of PEO chains and its dynamics and exfoliation of MMT clay nanoplatelets in these complex fluids. The formation of PEO–MMT clay supramolecular lamellar nanostructures with increase in continuity of lamellae arrangements were explored for the structural conformation of these nanocomposite novel materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Pinnavaia TJ, Beall GW (2001) Polymer–clay nanocomposites. Wiley, New York

    Google Scholar 

  2. Carrado KA (2000) Appl Clay Sci 17:1–23

    Article  CAS  Google Scholar 

  3. Ray SS, Okamoto M (2003) Prog Polym Sci 28:1539–1641

    Article  CAS  Google Scholar 

  4. Tanaka T, Montanari GC, Mülhaupt R (2004) IEEE Trans Dielectr Electr Insul 11:763–784

    Article  CAS  Google Scholar 

  5. Ray SS, Bousmina M (2005) Prog Mater Sci 50:962–1079

    Article  CAS  Google Scholar 

  6. Burmistr MV, Sukhyy KM, Shilov VV, Pissis P, Spanoudak A, Sukha IV, Tomila VI, Gomza YP (2005) Polymer 46:12226–12232

    Article  CAS  Google Scholar 

  7. Aranda P, Darder M, Fernández-Saavedra R, López-Blanco M, Ruiz-Hitzky E (2006) Thin Solid Films 495:104–112

    Article  CAS  Google Scholar 

  8. Gun'ko VM, Pissis P, Spanoudaki A, Zarko VI, Nychiporuk YM, Andriyko LS, Goncharuk EV, Leboda R, Skubiszewska-Zieba J, Osovskii VD, Ptushinskii YG (2007) J Colloid Interface Sci 312:201–213

    Article  Google Scholar 

  9. Bergaya F, Theng BKG, Lagaly G (2006) Handbook of clay science. Elsevier, Amsterdam

    Google Scholar 

  10. Ogata N, Kawakage S, Ogihara T (1997) Polymer 38:5115–5118

    Article  CAS  Google Scholar 

  11. Tunney JJ, Detellier C (1996) Chem Mater 8:927–935

    Article  CAS  Google Scholar 

  12. Liao B, Song M, Liang H, Pang Y (2001) Polymer 42:10007–10011

    Article  CAS  Google Scholar 

  13. Shen Z, Simon GP, Cheng YB (2002) Polymer 43:4251–4260

    Article  CAS  Google Scholar 

  14. Shen Z, Simon GP, Cheng YB (2003) Eur Polym J 39:1917–1924

    Article  CAS  Google Scholar 

  15. Strawhecker KE, Manias E (2003) Chem Mater 15:844–849

    Article  CAS  Google Scholar 

  16. Chaiko DJ (2003) Chem Mater 15:1105–1110

    Article  CAS  Google Scholar 

  17. Chen B, Evans JRG (2004) J Phys Chem B 108:14986–14990

    Article  CAS  Google Scholar 

  18. Reinholdt MX, Kirkpatrick RJ, Pinnavaia TJ (2005) J Phys Chem B 109:16296–16303

    Article  CAS  Google Scholar 

  19. Hikosaka MY, Pulcinelli SH, Santilli CV, Dahmouche K, Craievich AF (2006) J Non-Cryst Solids 352:3705–3710

    Article  CAS  Google Scholar 

  20. Elmahdy MM, Chrissopoulou K, Afratis A, Floudas G, Anastasiadis SH (2006) Macromolecules 39:5170–5173

    Article  CAS  Google Scholar 

  21. Liu T, Chen B, Evans JRG (2008) Bioinsp Biomim 3:016005 (7pp)

    Article  Google Scholar 

  22. Chen HW, Chang FC (2001) Polymer 42:9763–9769

    Article  CAS  Google Scholar 

  23. Chen W, Xu Q, Yuan RZ (2001) Comp Sci Tech 61:935–939

    Article  CAS  Google Scholar 

  24. Chen HW, Chiu CY, Wu HD, Shen IW, Chang FC (2002) Polymer 43:5011–5016

    Article  CAS  Google Scholar 

  25. Loyens W, Maurer FHJ, Jannasch P (2005) Polymer 46:7334–7345

    Article  CAS  Google Scholar 

  26. Sandi G, Carrado KA, Joachin H, Lu W, Prakash J (2003) J Power Sources 119–121:492–496

    Article  Google Scholar 

  27. Thakur AK, Pradhan DK, Samantaray BK, Choudhary RNP (2006) J Power Sources 159:272–276

    Article  CAS  Google Scholar 

  28. Pradhan DK, Choudhary RNP, Samantaray BK (2008) Express Polym Lett 2:630–638

    Article  CAS  Google Scholar 

  29. Kim S, Hwang EJ, Jung Y, Han M, Park SJ (2008) Colloids Surf A: Physicochem Eng Asp 313–314:216–219

    Article  Google Scholar 

  30. Mousty C (2004) Appl Clay Sci 27:159–177

    Article  CAS  Google Scholar 

  31. Noda N, Lee YH, Bur AJ, Prabhu VM, Snyder CR, Roth SC, McBrearty M (2005) Polymer 46:7201–7217

    Article  CAS  Google Scholar 

  32. Okamoto M, Morita S, Kotaka T (2001) Polymer 42:2685–2688

    Article  CAS  Google Scholar 

  33. Pluta M, Jeszka JK, Boiteux G (2007) Eur Polym J 43:2819–2835

    Article  CAS  Google Scholar 

  34. Mijović J, Lee H, Kenny J, Mays J (2006) Macromolecules 39:2172–2182

    Article  Google Scholar 

  35. Rao Y, Pochan JM (2007) Macromolecules 40:290–296

    Article  CAS  Google Scholar 

  36. Böhning M, Goering H, Fritz A, Brzezinka KW, Turky G, Schönhals A, Schartel B (2005) Macromolecules 38:2764–2774

    Article  Google Scholar 

  37. Yi X, Duan HL, Chen Y, Wang J (2007) Physica Letters A 372:68–71

    Article  CAS  Google Scholar 

  38. Passaglia E, Bertoldo M, Ciardelli F, Prevosto D, Lucchesi M (2008) Eur Polym J 44:1296–1308

    Article  CAS  Google Scholar 

  39. Fritzsche J, Das A, Jurk R, Stöckelhuber KW, Heinrich G, Klüppel M (2008) Express Polym Letts 2:373–381

    Article  CAS  Google Scholar 

  40. Kanapitsas A, Pissis P, Kotsilkova R (2002) J Non-Cryst Solids 305:204–211

    Article  CAS  Google Scholar 

  41. Mamunya Y, Kanapitsas A, Pissis P, Boiteux G, Lebedev E (2003) Macromol Symp 198:449–459

    Article  CAS  Google Scholar 

  42. Gun'ko VM, Borysenko MV, Pissis P, Spanoudaki A, Shinyashiki N, Sulim IY, Kulik TV, Palyanytsya BB (2007) Appl Surf Sci 253:7143–7156

    Article  Google Scholar 

  43. Sengwa RJ, Choudhary S, Sankhla S (2008) Express Polym Letts 2:800–809

    Article  CAS  Google Scholar 

  44. Sengwa RJ, Choudhary S, Sankhla S (2009) Colloids Surf A: Physicochem Eng Aspects 336:79–87

    Article  CAS  Google Scholar 

  45. Technologies A (2000) Agilent 16452A liquid test fixture—operation and service manual. Agilent, Japan

    Google Scholar 

  46. Macedo PB, Moynihan CT, Bose R (1972) Phys Chem Glasses 13:171–179

    CAS  Google Scholar 

  47. Zhang S, Dou S, Colby RH, Runt J (2005) J Non-Cryst Solids 351:2825–2830

    Article  CAS  Google Scholar 

  48. Klein RJ, Zhang S, Dou S, Jones BH, Colby RH, Runt J (2006) J Chem Phys 124:144903 (8pp)

    Article  Google Scholar 

  49. Sengwa RJ, Sankhla S (2007) Colloid Polym Sci 285:1237–1246

    Article  CAS  Google Scholar 

  50. Sengwa RJ, Sankhla S (2007) J Macromole Sci Part B: Phys 46:717–747

    Article  CAS  Google Scholar 

  51. Macdonald JR (1987) Impedance spectroscopy. Wiley, New York

    Google Scholar 

  52. Kyritsis A, Pissis P, Grammatikakis J (1995) J Polym Sci Part B: Polym Phys 33:1737–1750

    Article  CAS  Google Scholar 

  53. Pissis P, Kyritsis A (1997) Solid State Ionics 97:105–113

    Article  CAS  Google Scholar 

  54. Sengwa RJ, Sankhla S (2007) Polymer 48:2737–2744

    Article  CAS  Google Scholar 

  55. Sengwa RJ, Sankhla S (2008) Polym Bulletin 60:689–700

    Article  CAS  Google Scholar 

  56. Plocharski J, Wycislik H (2000) Solid State Ionics 127:337–344

    Article  CAS  Google Scholar 

  57. Krishantha DMM, Rajapakse RMG, Tennakoon DTB, Dias HVR (2006) Ionics 12:287–294

    Article  CAS  Google Scholar 

  58. Subba Reddy ChV, Wu GP, Zhao CX, Zhu QY, Chen W, Kalluru RR (2007) J Non-Cryst Solids 353:440–445

    Article  Google Scholar 

  59. Kremer F, Schönhals A (2003) Broadband dielectric spectroscopy. Springer, New York

    Google Scholar 

  60. Shinyashiki N, Sengwa RJ, Tsubotani S, Nakamura H, Sudo S, Yagihara S (2006) J Phys Chem A 110:4953–4957

    Article  CAS  Google Scholar 

  61. Sengwa RJ, Choudhary S, Sankhla S (2009) Polym Int 58:781–789

    Article  CAS  Google Scholar 

  62. Fragiadakis D, Dou S, Colby RH, Runt J (2008) Macromolecules 41:5723–5728

    Article  CAS  Google Scholar 

  63. Fragiadakis D, Dou S, Colby RH, Runt J (2009) J Chem Phys 130:064907 (11pp)

    Article  Google Scholar 

  64. Kyritsis A, Pissis P (1997) Macromol Sympo 119:15–24

    CAS  Google Scholar 

  65. Jonscher AK (1983) Dielectric relaxation in solids. Chelsea Dielectric, London

    Google Scholar 

  66. Mauritz KA (1989) Macromolecules 22:4483–4488

    Article  CAS  Google Scholar 

  67. Dyre JC (1988) J Appl Phys 64:2456–2468

    Article  Google Scholar 

  68. Dyre JC, Schrøder TB (2000) Rev Mod Phys 72:873–892

    Article  Google Scholar 

  69. Schrøder TB, Dyre JC (2002) Phys Chem Chem Phys 4:3173–3178

    Article  Google Scholar 

  70. Dyre JC, Maass P, Roling B, Sidebottom DL (2009) Rep Prog Phys 72:046501 (15pp)

    Article  Google Scholar 

  71. Sidebottom DL (1999) Phys Rev Lett 82:3653–3656

    Article  CAS  Google Scholar 

  72. Macdonald JR (2005) Phys Rev B 71:184307 (12pp)

    Article  Google Scholar 

  73. MacCallum JR, Vincent CA (1987) Polymer electrolyte reviews, vol I. Elsevier, London

    Google Scholar 

  74. Pandis C, Logakis E, Peoglos V, Pissis P, Omastová M, Mravćáková M, Janke A, Pionteck J, Peneva Y, Minkova L (2009) J Polym Sci Part B: Polym Phys 47:407–423

    Article  CAS  Google Scholar 

  75. Aranda P, Ruiz-Hitzky E (1999) Appl Clay Sci 15:119–135

    Article  CAS  Google Scholar 

  76. Kyritsis A, Pissis P (1997) J Polym Sci B: Polym Phys 35:1545–1560

    Article  CAS  Google Scholar 

  77. de Bruyn JR, Pignon F, Tsabet E, Magnin A (2008) Rheol Acta 47:63–73

    Article  CAS  Google Scholar 

  78. Nelson A, Cosgrove T (2004) Langmuir 20:2298–2304

    Article  CAS  Google Scholar 

  79. Nelson A, Cosgrove T (2004) Langmuir 20:10382–10388

    Article  CAS  Google Scholar 

  80. Robledo A, Garcia NJ, Bazan JC (2001) Solid State Ionics 139:303–308

    Article  CAS  Google Scholar 

  81. Miwa Y, Drews AR, Schlick S (2008) Macromolecules 41:4701–4708

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors are grateful to the Department of Science and Technology, New Delhi for providing the experimental facilities through project No. SR/S2/CMP-09/2002. One of the authors SS is grateful to the CSIR, New Delhi for providing the RA Fellowship, and SC is thankful to the University Grants Commission, New Delhi for the award of RFSMS fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. J. Sengwa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sengwa, R.J., Sankhla, S. & Choudhary, S. Dielectric relaxation processes and ionic conduction behaviour in poly(ethylene oxide)–montmorillonite clay nanocomposite aqueous colloidal suspensions. Colloid Polym Sci 287, 1013–1024 (2009). https://doi.org/10.1007/s00396-009-2056-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-009-2056-6

Keywords

Navigation