Skip to main content
Log in

Properties of microemulsions with sugar surfactants and peppermint oil

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

In this study, we report on the properties of water + propylene glycol/sugar surfactant/peppermint oil + ethanol. The sugar surfactants were sucrose monolaurate and sucrose dilaurate. The mixing ratios (w/w) of water/propylene glycol and that of ethanol/oil equal 2 and 1, respectively. U-type microemulsions were observed in the sucrose monolaurate while S-type microemulsions were observed in the dilaurate-based systems. Temperature-insensitive microemulsions were formulated using the two surfactants. Water volume fraction percolation thresholds were determined by the study of electrical conductivity and dynamic viscosity. The structural parameters that include the periodicity and the correlation length were estimated using small angle X-ray scattering. The periodicity increases linearly with the increase in the water content whereas the correlation length increases with the increase in the water volume fraction to a certain value then decreases. The diffusion properties investigated by nuclear magnetic resonance confirm a progressive transformation of the microemulsions from water-in-oil to bicontinuous and inversion to oil-in-water upon dilution with water. The hydrodynamic radius of diluted microemulsions measured by dynamic light scattering increases with the increase in temperature. The area per polar head group decreases with the increase in temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Fanun M (ed) (2008) Microemulsions: properties and applications. Taylor and Francis/CRC, Boca Raton

    Google Scholar 

  2. Kumar P, Mittal KL (eds) (1998) Handbook of microemulsions science and technology. Marcel Dekker, New York

    Google Scholar 

  3. Sjoblom J, Lindberg R, Friberg SE (1996) Microemulsions-phase equilibria characterization, structure, applications and chemical reactions. Adv Colloid Interface Sci 95:125–287

    Article  Google Scholar 

  4. Moulik SP, Paul BK (1998) Structure, dynamics and transport properties of microemulsions. Adv Colloid Interface Sci 78:99–195

    Article  CAS  Google Scholar 

  5. Solans C, Kunieda H (eds) (1997) Industrial applications of microemulsions. Surfactant science series Vol. 66. Marcel Dekker, New York

    Google Scholar 

  6. Fanun M (2008) A study of the properties of mixed nonionic surfactants microemulsions by NMR, SAXS, viscosity and conductivity. J Mol Liq 142:103–110

    Article  CAS  Google Scholar 

  7. Fanun M (2007) Conductivity, viscosity, NMR and diclofenac solubilization capacity studies of mixed nonionic surfactants microemulsions. J Mol Liq 135:5–13

    Article  CAS  Google Scholar 

  8. Fanun M, Salah Al-Diyn W (2007) Structural transitions in the system water/mixed nonionic surfactants/R (+)-limonene studied by electrical conductivity and self-diffusion-NMR. J Dispers Sci Technol 28:165–174

    Article  CAS  Google Scholar 

  9. Kunieda H, Ozawa K, Huang KL (1998) Effect of oil on the surfactant molecular curvatures in liquid crystals. J Phys Chem B 102:831–837

    Article  CAS  Google Scholar 

  10. Aramaki K, Kunieda H (1999) Solubilization of oil in a mixed cationic liquid crystal. Colloid Polym Sci 277:34–40

    Article  CAS  Google Scholar 

  11. Glatter O, Orthaber D, Stradner A, Scherf G, Fanun M, Garti N, Clement V, Leser ME (2001) Sugar ester non-ionic microemulsions: structural characterization. J Colloid Interface Sci 241:215

    Article  CAS  Google Scholar 

  12. Fanun M, Wachtel E, Antalek B, Aserin A, Garti N (2001) A study of the microstructure of four-component sucrose ester microemulsions by SAXS and NMR. Colloids Surf A 180:173–186

    Article  CAS  Google Scholar 

  13. Lehmann L, Keipert S, Gloor M (2001) Effects of microemulsions on the stratum corneum and hydrocortisone penetration. Eur J Pharm Biopharm 52:129–136

    Article  CAS  Google Scholar 

  14. Zhang H, Feng F, Fu X, Du Y, Zhang L, Zheng X (2007) Antimicrobial effect of food-grade GML microemulsions against Staphylococcus aureus. Eur Food Res Technol 226:281–286

    Article  CAS  Google Scholar 

  15. Garti N, Clement V, Fanun M, Leser ME (2000) Some characteristics of sugar ester nonionic microemulsions in view of possible food applications. J Agric Food Chem 48:3945–3956

    Article  CAS  Google Scholar 

  16. Khiew PS, Huang NM, Radiman S, Ahmad S (2004) Synthesis of NiS nanoparticles using a sugar-ester nonionic water-in-oil microemulsion. Mater Lett 58:762–767

    Article  CAS  Google Scholar 

  17. Kahlweit M, Strey R, Busse G (1990) Microemulsions: a qualitative thermodynamic approach. J Phys Chem 94:3881–3894

    Article  CAS  Google Scholar 

  18. Kahlweit M, Strey R, Schomacker R, Hasse D (1989) General patterns of the phase behavior of mixtures of water, nonpolar solvents, amphiphiles, and electrolytes. 2. Langmuir 5:305–315

    Article  CAS  Google Scholar 

  19. Schubert KV, Kaler E (1996) Nonionic microemulsions. Ber Bunsenges Phy Chem 100:190

    CAS  Google Scholar 

  20. Kahlweit M, Strey R, Haase D, Kunieda H, Schmeling T, Faulhaber B, Borkovec M, Eicke HF, Busse G, Eggers F, Funck T, Richmann H, Magid L, Soderman O, Stilbs P, Winkler J, Dittrich A, Jahn W (1987) How to study microemulsions? J Colloid Interface Sci 118:436–453

    Article  CAS  Google Scholar 

  21. Berghenholtz J, Romagnoli A, Wagner N (1995) Viscosity, microstructure, and interparticle potential of AOT/H2O/n-decane inverse microemulsions. Langmuir 1:1559–1570

    Article  Google Scholar 

  22. Feldman Y, Kozlovich N, Nir I, Garti N (1995) Dielectric relaxation in sodium bis(2-ethylhexyl) sulfosuccinate–water–decane microemulsions near the percolation temperature threshold. Phys Rev E 51:478–491

    Article  CAS  Google Scholar 

  23. Cametti C, Codastefano P, Tartaglia P, Chen SH, Rouch J (1992) Electrical conductivity and percolation phenomena in water-in-oil microemulsions. J Phys Rev A 45:R5358–R5361

    Article  CAS  Google Scholar 

  24. Eicke HF, Meier W, Hammerich H (1994) On electric conductivity of infinite clusters in water-in-oil microemulsions. Langmuir 10:2223–2227

    Article  CAS  Google Scholar 

  25. Lake JA (1967) An iterative method of slit-correcting small angle X-ray data. Acta Crystallogr A 23:191–194

    Article  CAS  Google Scholar 

  26. Teubner M, Strey R (1987) Origin of the scattering peak in microemulsions. J Chem Phys 87:3195

    Article  CAS  Google Scholar 

  27. Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical recipes in C: the art of scientific computing. Cambridge University Press, New York

    Google Scholar 

  28. Brunner-Popela J, Mittelbach R, Strey R, Schubert KV, Kaler EW, Glatter O (1999) Small-angle scattering of interacting particles. III. D2O-C12E5 mixtures and microemulsions with n-octane. J Chem Phys 21:10623

    Article  Google Scholar 

  29. Wu D, Chen A, Johnson CS (1995) An improved diffusion-ordered spectroscopy experiment incorporating bipolar-gradient pulses. J Magn Reson 115:260–264

    Article  CAS  Google Scholar 

  30. Stejskal EO (1995) In: Stejskal EO (ed) Encyclopedia of nuclear magnetic resonance. Wiley, New York, pp 657–658

    Google Scholar 

  31. Koppel DE (1972) Analysis of macro molecular polydispersity in intensity correlation spectroscopy: the method of cumulants. J Chem Phys 57:4814–4820

    Article  CAS  Google Scholar 

  32. Provencher SW (1979) Inverse problems in polymer characterisation: direct analysis of polydispersity with photon correlation spectroscopy. Macromol Chem 180:201–209

    Article  CAS  Google Scholar 

  33. Pes MA, Aramaki K, Nakamura N, Kunieda H (1996) Temperature-insensitive microemulsionsin a sucrose monoalkanoate system. J Colloid Interface Sci 178:666

    Article  CAS  Google Scholar 

  34. Fanun M (2009) Microemulsion formation on water/nonionic surfactant/peppermint oil mixtures. J Dispers Sci Technol 30(3):289–296

    Article  CAS  Google Scholar 

  35. Strey R (1996) I. Experimental facts water-nonionic surfactant systems, the effect of additives. Ber Bunsenges Phys Chem 100:182–189

    CAS  Google Scholar 

  36. Yaghmur A, Aserin A, Garti N (2002) Phase behavior of microemulsions based on food-grade nonionic surfactants: effect of polyols and short-chain alcohols. Colloids Surf A 209:71–81

    Article  CAS  Google Scholar 

  37. Garti N, Aserin A, Fanun M (2000) Non-ionic sucrose esters microemulsions for food applications, part I: Water solubilization. Colloids Surf A 164:27–38

    Article  CAS  Google Scholar 

  38. Stilbs P, Lindman B (1983) Effect of alcohol cosurfactant length on microemulsion structure. J Colloid Interface Sci 95:583–585

    Article  CAS  Google Scholar 

  39. Alany RG, Rades T, Agatonovic-Kustin S, Davies NM, Tucker IG (2000) Effects of alcohols and diols on the phase behaviour of quaternary systems. Int J Pharm 196:141

    Article  CAS  Google Scholar 

  40. Safran SA, Grest GS, Bug A, Webman I (1987) I. Percolation in interacting microemulsions. In: Rosano H, Clausse M (eds) Microemulsion systems. Marcel Dekker, New York, pp 235–245

    Google Scholar 

  41. De Gennes PG, Taupin C (1990) Microemulsions and the flexibility of oil/water interfaces. J Phys Chem 94:8407–8413

    Article  Google Scholar 

  42. Grest G, Webman I, Safran S, Bug A (1986) Dynamic percolation in microemulsions. Phys Rev A 33:2842–2845

    Article  CAS  Google Scholar 

  43. Djordjevic L, Primorac M, Stupar M, Krajisnik D (2004) In vitro release of diclofenac diethylamine from caprylocaproyl macrogloglycerides based microemulsions. Int J Pharm 271:11–19

    Article  CAS  Google Scholar 

  44. Mehta SK, Dewan RK, Bala K (1994) Percolation phenomenon and the study of conductivity, viscosity, and ultrasonic velocity in microemulsions. Phys Rev E 50:4759–4762

    Article  CAS  Google Scholar 

  45. Ajith S, Rakshit AK (1995) Effect of NaCl on a nonionic surfactant microemulsion system. Langmuir 11:1122–1126

    Article  CAS  Google Scholar 

  46. Rakshit AK, Ajith S (1995) Studies of mixed surfactant microemulsion systems: Brij 35 with Tween 20 and sodium dodecyl sulfate. J Phys Chem 99:14778–14783

    Article  Google Scholar 

  47. Peyrelasse J, Boned C (1990) Conductivity, dielectric relaxation, and viscosity of ternary microemulsions: the role of the experimental path and the point of view of percolation theory. Phys Rev A 41:938–953

    Article  CAS  Google Scholar 

  48. Nilsson PG, Lindman B (1983) Water self-diffusion in nonionic surfactant solution. Hydration and obstruction effects. J Phys Chem 87:4756–4761

    Article  CAS  Google Scholar 

  49. Lindman B, Shinoda K, Jonstromer M, Shinohara A (1988) A change of organized solution (microemulsion) structure with small changes in surfactant composition as revealed by NMR self-diffusion studies. J Phys Chem 92:4702–4706

    Article  CAS  Google Scholar 

  50. Bastogne F, Nagy BJ, David C (1999) Quaternary ‘N-alkylaldonamide-brine-decane-alcohol’ systems. Part II: microstructure of the one-phase microemulsion by NMR spectroscopy. Colloids Surf A 148:245–257

    Article  CAS  Google Scholar 

  51. El-Seoud O (1997) Use of NMR to probe the structure of water at interfaces of organized assemblies. J Mol Liq 72:85–103

    Article  CAS  Google Scholar 

  52. Olsson U, Nagai K, Wennerstrom H (1988) Microemulsions with nonionic surfactants. 1. Diffusion process of oil molecules. J Phys Chem 92:6675–6679

    Article  CAS  Google Scholar 

  53. Soderman O, Nyden M (1999) NMR in microemulsions. NMR translational diffusion studies of a model microemulsion. Colloids Surf A 158:273–280

    Article  CAS  Google Scholar 

  54. Ko CJ, Ko YJ, Kim DM, Park HJ (2003) Solution properties and PGSE-NMR self-diffusion study of C18:1E10/oil/water system. Colloids Surf A 216:55–63

    Article  CAS  Google Scholar 

  55. Fanun M (2007) Structure probing of water/mixed nonionic surfactants/caprylic capric triglyceride. J Mol Liq 133:22–27

    Article  CAS  Google Scholar 

  56. Fanun M, Salah Al-Diyn W (2006) Electrical conductivity and self diffusion NMR studies of the system: water/sucrose laurate/ethoxylated mono-di-glyceride/isopropylmyristate systems. Colloids Surf A 277:83–89

    Article  CAS  Google Scholar 

  57. Arvidsson A, Soderman O (2001) The microemulsion phase in the didecyldimethylammonium bromide/dodecane/water system. Phase diagram, microstructure, and nucleation kinetics of excess oil phase. Langmuir 17:3567–3572

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monzer Fanun.

Electronic supplementary materials

ESM 1

(DOC 299 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fanun, M. Properties of microemulsions with sugar surfactants and peppermint oil. Colloid Polym Sci 287, 899–910 (2009). https://doi.org/10.1007/s00396-009-2043-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-009-2043-y

Keywords

Navigation