Skip to main content
Log in

Study on line tension of air/hexadecane/aqueous surfactant system

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

We measured the line tension of the air/hexadecane/aqueous solution of the dodecyltrimethylammonium bromide (DTAB) system as a function of the molality of DTAB aqueous solution at 298.15 K. The experimental values of the line tension were 10−10 to 10−12 N, and they coincided with the theoretical estimates. Furthermore, it was found that the line tension changes in sign from positive to negative at around 0.750 mmol kg−1. This concentration is close to the point of transition from partial to frustrated-complete wetting. Taking into account the profiles of the free energy of the air/water surface, previously developed by Indekeu to understand the interrelationship between the wetting transition and line tension, it is suggested that the sign reversal of the line tension can be attributed to the transition from partial to frustrated-complete wetting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gibbs JW (1961) The scientific papers of J. Willard Gibbs. Dover, New York

    Google Scholar 

  2. Scheludko A, Chakarov V, Toshev B (1981) J Colloid Interface Sci 82:83–92

    Article  Google Scholar 

  3. Toshev BV, Platikanov D, Scheludko A (1988) Langmuir 4:489–499

    Article  CAS  Google Scholar 

  4. Ivanov IB, Kralchevsky PA, Dimitrov AS, Nikolov AD (1992) Adv Colloid Interface Sci 39:77–101

    Article  CAS  Google Scholar 

  5. Li M, Tikhonov AM, Schlossman ML (2002) Europhys Lett 58:80–86

    Article  CAS  Google Scholar 

  6. Tikhonov AM, Pingali SV, Schlossman ML (2004) J Chem Phys 120:11822–11838

    Article  CAS  Google Scholar 

  7. Umeda T, Suezaki Y, Takiguchi K, Hotani H (2005) Phys Rev E 71:011913

    Article  Google Scholar 

  8. Harden JL, MacKintosh FC, Olmsted PD (2005) Phys Rev E 72:011903

    Article  CAS  Google Scholar 

  9. Lamgmuir I (1933) J Chem Phys 1:756–776

    Article  Google Scholar 

  10. Mingins J, Scheludko A (1979) J Chem Soc Faraday Trans 75:1–6

    CAS  Google Scholar 

  11. Gaydos J, Neumann AW (1987) J Colloid Interface Sci 120:76–86

    Article  CAS  Google Scholar 

  12. Li D, Neumann AW (1990) Colloids Surf 43:195–206

    Article  CAS  Google Scholar 

  13. Dussaud A, Vignes-Adler M (1997) Langmuir 13:581–589

    Article  CAS  Google Scholar 

  14. Amirfazli A, Kwok DY, Gaydos J, Neumann AW (1998) J Colloid Interface Sci 205:1–11

    Article  CAS  Google Scholar 

  15. Pompe T, Fery A, Herminghaus S (1998) Langmuir 14:2585–2588

    Article  CAS  Google Scholar 

  16. Stockelhuber KW, Radoev B, Schulze HJ (1999) Colloids Surf A 156:323–333

    Article  CAS  Google Scholar 

  17. Faraudo J, Bresme F (2003) J Chem Phys 118:6518–6528

    Article  CAS  Google Scholar 

  18. Chen P, Susnar SS, Amirfazli A, Mak C, Neumann AW (1997) Langmuir 13:3035–3042

    Article  CAS  Google Scholar 

  19. Wang JY, Betelu S, Law BM (2001) Phys Rev E 63:031601

    Article  CAS  Google Scholar 

  20. Checco A, Guenoun P, Daillant J (2003) Phys Rev Lett 91:186101

    Article  Google Scholar 

  21. Lin FYH, Li D, Neumann AW (1993) J Colloid Interface Sci 159:86–95

    Article  CAS  Google Scholar 

  22. Tadmor R (2004) Langmuir 20:7659–7664

    Article  CAS  Google Scholar 

  23. Wang JY, Betelu S, Law BM (1999) Phys Rev Lett 83:3677–3680

    Article  CAS  Google Scholar 

  24. Pompe T, Herminghaus S (2000) Phys Rev Lett 85:1930–1933

    Article  CAS  Google Scholar 

  25. Pompe T (2002) Phys Rev Lett 89:076102

    Article  CAS  Google Scholar 

  26. Aveyard R, Clint JH, Nees D, Paunov V (1999) Colloids Surf A 146:95–111

    Article  CAS  Google Scholar 

  27. Rowlinson JS, Widom B (1982) Molecular theory of capillarity, chapter 8. Oxford University Press, Oxford New York

    Google Scholar 

  28. Widom B, Clarke AS (1990) Physica A 168:149–159

    Article  CAS  Google Scholar 

  29. Widom B, Widom H (1991) Physica A 173:72–110

    Article  CAS  Google Scholar 

  30. Getta T, Dietrich S (1998) Phys Rev E 57:655–671

    Article  CAS  Google Scholar 

  31. Bauer C, Dietrich S (1999) Euro Phys J B 10:767–779

    Article  CAS  Google Scholar 

  32. Indekeu JO (1992) Physica A 183:439–461

    Article  CAS  Google Scholar 

  33. Dobbs H (1999) Langmuir 15:2586–2591

    Article  CAS  Google Scholar 

  34. Aratono M, Kahlweit M (1991) J Chem Phys 95:8578–8583

    Article  CAS  Google Scholar 

  35. Chen LJ, Yan WJ (1993) J Chem Phys 98:4830–4837

    Article  CAS  Google Scholar 

  36. Ragil K, Meunier J, Broseta D, Indekeu JO, Bonn D (1996) Phys Rev Lett 77:1532–1535

    Article  CAS  Google Scholar 

  37. Pfohl T, Riegler H (1999) Phys Rev Lett 82:783–786

    Article  CAS  Google Scholar 

  38. Aratono M, Kawagoe H, Toyomasu T, Ikeda N, Takiue T, Matsubara H (2001) Langmuir 17:7344–7349

    Article  CAS  Google Scholar 

  39. Matsubara H, Ikeda N, Takiue T, Aratono M, Bain CD (2003) Langmuir 19:2249–2253

    Article  CAS  Google Scholar 

  40. Wilkinson KM, Bain CD, Matsubara H, Aratono M (2005) ChemPhysChem 6:547–555

    Article  CAS  Google Scholar 

  41. Bertrand E, Dobbs H, Broseta D, Indekeu J, Bonn D, Meunier J (2000) Phys Rev Lett 85:1282–1285

    Article  CAS  Google Scholar 

  42. Takata Y, Matsubara H, Kikuchi Y, Ikeda N, Matsuda T, Takiue T, Aratono M (2005) Langmuir 21:8594–8596

    Article  CAS  Google Scholar 

  43. Matsubara H, Aratono M, Wilkinson K, Bain CD (2006) Langmuir 22:982–988

    Article  CAS  Google Scholar 

  44. Adamson AW, Gast AP (1997) Physical chemistry of surfaces, chapter 14. Wiley, New York

    Google Scholar 

  45. de Gennes PG (1985) Rev Mod Phys 57:827–863

    Article  Google Scholar 

  46. Israelachvili JN (1985) Intermolecular and surface forces, chapter 11. Academic, London

    Google Scholar 

  47. Aratono M, Toyomasu T, Ikeda N, Takiue T (1999) J Colloid Interface Sci 218:412–422

    Article  CAS  Google Scholar 

Download references

Acknowledgement

YT acknowledges the support from the Japan Society for the Promotion of Science (JSPS) through the Grant-in-Aid for JSPS Fellows. This work was also supported by the Grant-in-Aid for Exploratory Research (number 17655062) from JSPS. BL acknowledges the partial support for this work from the US National Science Foundation (grant number DMR-0603144).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youichi Takata.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takata, Y., Matsubara, H., Matsuda, T. et al. Study on line tension of air/hexadecane/aqueous surfactant system. Colloid Polym Sci 286, 647–654 (2008). https://doi.org/10.1007/s00396-007-1806-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-007-1806-6

Keywords

Navigation