Skip to main content
Log in

Metal nanoparticle formation on layer silicate lamellae

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Nanoparticles (Ag, Pd) were prepared by heterogeneous nucleation on the interlayer space of layered montmorillonite and kaolinite minerals in aquatic dispersion. Interlamellar incorporation of nanoparticles was monitored by X-ray diffraction and verified by transmission electron microscopy (TEM). After the reduction of adsorbed metal ions, a new Bragg reflection appeared, proving the formation of nanoparticles in the interlamellar space of clay mineral. Lamellar structure of layered silicates is partly destroyed by the particle formation. TEM images showed that larger nanoparticles were formed by UV irradiation and hydrazine hydrate than in the case of reduction by NaBH4. Aqueous solutions of polyvinyl pyrrolidone and clay minerals were used for the stabilization of Pd° nanoparticles. The size of particles generated on the surface of clay minerals by heterogeneous nucleation increased with increasing metal concentration. When polymer is added to this system, particle size can be decreased by increasing polymer concentration. In this case, the particles are stabilized by the concerted action of the support and the macromolecule. The polymers promoted intercalation of nanoparticles into the clay mineral. In the absence of nanoparticles, the intercalation of polymers was significantly less extensive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Bradley JS (1994) Clusters and colloids: From theory to application In: Schmid G (ed) VCH, New York, pp 459–536

    Google Scholar 

  2. Rampino LD, Nord FF (1941) J Am Chem Soc 63:2745

    Article  CAS  Google Scholar 

  3. Boutonnet M, Kizling J, Stenius P, Maire (1982) Colloids Surf 5:209

    Article  CAS  Google Scholar 

  4. Wang CC, Chen DH, Huang TC (2001) Colloids Surf A 189:145

    Article  CAS  Google Scholar 

  5. Nickel U, Castell A, Pöppl K, Schneider S (2000) Langmuir 16:9087

    Article  CAS  Google Scholar 

  6. Zhao MQ, Crooks RM (1999) Chem Mater 11:3379

    Article  CAS  Google Scholar 

  7. Naka Y, Kaeriyama K (1986) J Colloid Interface Sci 110:86126

    Google Scholar 

  8. Pillai ZS, Kamat PV (2004) J Phys Chem B 108:945

    Article  CAS  Google Scholar 

  9. Heard SM, Grieser F, Barraclough CG, Sanders JV (1983) J Colloid Interface Sci 93:545

    Article  CAS  Google Scholar 

  10. Hoogsteen W, Fokkink LGJ (1995) J Colloid Interface Sci 175:12

    Article  CAS  Google Scholar 

  11. Hirai H, Nakao Y, Toshima N (1979) J Macromol Sci Chem A13:727

    Article  Google Scholar 

  12. Teranishi T, Miyake M (1998) Chem Mater 10:594

    Article  CAS  Google Scholar 

  13. Wilcoxon JP, Williamson RL, Baughman R (1993) J Chem Phys 98:9933

    Article  CAS  Google Scholar 

  14. Parsapour F, Kelley DF, Craft S, Wilcoxon JP (1996) Phys Chem 104:4978

    Article  CAS  Google Scholar 

  15. Pocard NL, Alsmeyer DC, McCreery RL, Neenan TX, Callstrom MR (1992) J Am Chem Soc 114:769

    Article  CAS  Google Scholar 

  16. Steigerwald ML, Brus LE (1990) Acc Chem Res 23:183

    Article  CAS  Google Scholar 

  17. Cheomg Chan YN, Schrock RR, Cohen RE (1992) Chem Mater 4:205

    Google Scholar 

  18. Zhao M, Sun L, Crooks RM (1998) J Am Chem Soc 120:4877

    Article  CAS  Google Scholar 

  19. Bönnemann H, Braun G, Brijoux W, Brinkmann R, Schulze TA, Seevogel K, Siepen KJ (1996) Organomet Chem 520:143

    Article  Google Scholar 

  20. Reetz MT, Helbig WJ (1994) J Am Chem Soc 116:7401

    Article  CAS  Google Scholar 

  21. Reetz MT, Quaiser SA, Breinbauer R, Tesche B (1995) Angew Chem Int Ed Engl 34:2240

    Article  CAS  Google Scholar 

  22. Wang Q, Liu H, Wang H (1997) J Colloid Interface Sci 190:380

    Article  CAS  Google Scholar 

  23. Wang Y, Liu H, Huang Y, (1996) Polym Adv Technol 7:634

    Article  CAS  Google Scholar 

  24. Dékány I, Turi L, Szűcs A, Király Z (1998) Colloids Surf A 141:405

    Article  Google Scholar 

  25. Papp Sz, Szűcs A, Dékány I (2001) Appl Clay Sci 19:155

    Article  CAS  Google Scholar 

  26. Király Z, Dékány I, Mastalir Á, Bartók M (1996) J Catal 161:401

    Article  Google Scholar 

  27. Szűcs A, Király Z, Berger F, Dékány I (1998) Colloids Surf A 139:109

    Article  Google Scholar 

  28. Király Z, Veisz B, Mastalir Á, Rázga Zs, Dékány I (1999) Chem Comm 1925

  29. Papp Sz, Szűcs A, Dékány I (2001) Appl Clay Sci 19:155

    Article  CAS  Google Scholar 

  30. Dékány I, Farkas A, Király Z, Klumpp E, Narres HD (1996) Colloids Surf A 119:7

    Article  Google Scholar 

  31. Dékány I, Ábrahám I, Nagy LG, László K (1987) Colloids Surf A 23:57

    Article  Google Scholar 

Download references

Acknowledgement

The authors wish their thanks for the financial support of the Péter Pázmány Program of the Hungarian National Office of Research and Technology (number RET-07/2005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Imre Dékány.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Papp, S., Patakfalvi, R. & Dékány, I. Metal nanoparticle formation on layer silicate lamellae. Colloid Polym Sci 286, 3–14 (2008). https://doi.org/10.1007/s00396-007-1728-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-007-1728-3

Keywords

Navigation