Skip to main content
Log in

Superhydrophobic surfaces of microspheres obtained by self-assembly of poly[2-(perfluorooctyl)ethyl acrylate-ran-2-(dimethylamino)ethyl acrylate] in supercritical carbon dioxide

  • Short Communication
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Superhydrophobic surfaces were obtained by coating with microspheres formed by the self-assembly of poly[2-(perfluorooctyl)ethyl acrylate-ran-2-(dimethylamino)ethyl acrylate] (P[POA-r-DAA]) in the presence of dicarboxylic acids in supercritical carbon dioxide. The P[POA-r-DAA] random copolymer aggregated into micellar microspheres through the hydrogen bond cross-linking of the amino groups via the carboxylic acids. The size of the microspheres and the amount of the acids needed to produce them were dependent on the kinds of acids. Glutaric acid (Glu) and perfluorosuccinic acid (Psuc) provided microspheres at a 0.5 molar ratio of the acid/DAA. Psuc produced smaller microspheres than Glu. Maleic acid (Ma), succinic acid (Suc), and azelaic acid (Az) required a higher molar ratio to produce the microspheres. These acids provided spherical particles at the ratio of 1.0. The microspheres produced by Suc and Az contained particles with a several hundred nanometer size. The surface coated with the microspheres showed high water contact angles of 164°–172°.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Notes

  1. The broad molecular weight distribution of the copolymer should be based on the poor solubility of the POA units. In fact, as the molar ratio of the POA to DAA units in the copolymer increased, the molecular weight distribution increased [22]. However, the differential scanning calorimeter analysis confirmed that no POA homopolymer was included in the copolymer.

  2. Poly(POA) showed the melting temperature at 72.2 °C, whereas poly(DAA) had the melting temperature below −50 °C.

References

  1. Nakajima A, Fujishima A, Hashimoto K, Watanabe T (1999) Adv Mater 11:1365

    Article  CAS  Google Scholar 

  2. Zhang X, Shi F, Yu X, Liu H, Fu Y, Wang Z, Jiang L, Li X (2004) J Am Chem Soc 126:3064

    Article  CAS  Google Scholar 

  3. Kojima A, Izumi Y, Kowase Y, Ohte T, Miyashima K (1998) J Photopolym Sci Technol 11:321

    CAS  Google Scholar 

  4. Chen W, Fadeev AY, Hsieh MC, Oner D, Youngblood J, McCarthy TJ (1999) Langmuir 15:3395

    Article  CAS  Google Scholar 

  5. Woodward I, Schofield WCE, Roucoules V, Badyal JPS (2003) Langmuir 19:3432

    Article  CAS  Google Scholar 

  6. Youngblood JP, McCarthy TJ (1999) Macromolecules 32:6800

    Article  CAS  Google Scholar 

  7. Morra M, Occhiello E, Garbassi F (1989) Langmuir 5:872

    Article  CAS  Google Scholar 

  8. Xie Q, Xu J, Feng L, Jiang L, Tang W, Luo X, Han CC (2004) Adv Mater 16:302

    Article  CAS  Google Scholar 

  9. Onda T, Shibuichi S, Satoh N, Tsujii K (1996) Langmuir 12:2125

    Article  CAS  Google Scholar 

  10. Shibuichi S, Onda T, Satoh N, Tsujii K (1996) J Phys Chem 100:19512

    Article  CAS  Google Scholar 

  11. Yabu H, Takebayashi M, Tanaka M, Shimomura M (2005) Langmuir 21:3235

    Article  CAS  Google Scholar 

  12. Erbil HY, Demirel AL, Avci Y, Mert O (2003) Science 299:1377

    Article  CAS  Google Scholar 

  13. Lu X, Zhang C, Han Y (2004) Macromol Rapid Commun 25:1606

    Article  CAS  Google Scholar 

  14. Lau KKS, Bico J, Teo KBK, Chhowalla M, Amaratunga GAJ, Milne WI, McKinley GH, Gleason KK (2003) Nano Lett 3:1701

    Article  CAS  Google Scholar 

  15. Feng L, Li S, Li Y, Li H, Zhang L, Zhai J, Song Y, Liu B, Jiang L, Zhu D (2002) Adv Mater 14:1857

    Article  CAS  Google Scholar 

  16. Li H, Wang X, Song Y, Liu Y, Li Q, Jiang L, Zhu D (2001) Angew Chem Int Ed 40:1743

    Article  CAS  Google Scholar 

  17. Feng L, Li S, Li H, Zhai J, Song Y, Jiang L, Zhu D (2002) Angew Chem Int Ed 41:1221

    Article  CAS  Google Scholar 

  18. Feng X, Feng L, Jin M, Zhai J, Jiang L, Zhu D (2004) J Am Chem Soc 126:62

    Article  CAS  Google Scholar 

  19. Jiang L, Zhao Y, Zhai J (2004) Angew Chem Int Ed 43:4338

    Article  CAS  Google Scholar 

  20. Shiu JY, Kuo CW, Chen P, Mou CY (2004) Chem Mater 16:561

    Article  CAS  Google Scholar 

  21. Han JT, Xu X, Cho K (2005) Langmuir 21:6662

    Article  CAS  Google Scholar 

  22. Yoshida E, Nagakubo A (2007) Colloid Polym Sci 285:441

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eri Yoshida.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoshida, E., Nagakubo, A. Superhydrophobic surfaces of microspheres obtained by self-assembly of poly[2-(perfluorooctyl)ethyl acrylate-ran-2-(dimethylamino)ethyl acrylate] in supercritical carbon dioxide. Colloid Polym Sci 285, 1293–1297 (2007). https://doi.org/10.1007/s00396-007-1712-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-007-1712-y

Keywords

Navigation