Skip to main content
Log in

Effects of denaturation and association of collagen on adsorption behavior: two-dimensional nanostructure and its property

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Effects of denaturation and association of collagen on adsorption behavior were studied in various pH and temperature T by a quartz crystal microbalance QCM. The surface nanostructure, the adhesion force F ad, and the local frictional coefficient μ of collagen were studied by an atomic force microscope AFM and a lateral force microscope LFM. Adsorptions of collagen were Langmuir type in the regions of pH 3.0–5.8 and T = 25–50 °C. With increasing pH and T, adsorption mass Γ increased, and adsorbed fibrils increased in width. At interface, the association of collagen molecules in solution enhanced the formation of fibrils. The results of F ad in the solution of pH 3.0 increased with increasing Γ and T but decreased in pH 5.8. The results of μ increased with increasing Γ and T, and those in pH 3.0, were much greater than those in pH 5.8. From comparing them with the results of bovine serum albumin and sodium hyaluronate monolayer, we concluded that nonelectrostatic interactions and the softness of collagen layer contribute primarily to F ad and μ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Steinhart M, Wendorff JH, Greiner A et al (2002) Science 296:1997

    Article  CAS  Google Scholar 

  2. Kamata K, Lu Y, Xia YN (2003) J Am Chem Soc 125:2384

    Article  CAS  Google Scholar 

  3. Lee HC, Kim HJ, Chung SH et al (2003) J Am Chem Soc 125:2882

    Article  CAS  Google Scholar 

  4. Puntes VF, Krishnan KM, Alivisatos AP (2001) Science 291:2115

    Article  CAS  Google Scholar 

  5. Price RR, Dressick WJ, Singh A (2003) J Am Chem Soc 125:11259

    Article  CAS  Google Scholar 

  6. Rich A, Crick FHC (1996) J Mol Biol 3:483

    Article  Google Scholar 

  7. Rich A, Crick FHC (1998) Nature (Lond) 176:915

    Article  Google Scholar 

  8. Ramachandram GN, Karatha G (1955) Nature (Lond) 176:593

    Article  Google Scholar 

  9. Dupont-Gillain CC, Jacquemart I, Rouxhet PG (2005) Colloids Surf B Biointerfaces 43:179

    Article  CAS  Google Scholar 

  10. Jacquemart I, Pamula E, De Cupere VM, Rouxhet PG, Dupont-Gillain CC (2004) J Colloid Interface Sci 278:63

    Article  CAS  Google Scholar 

  11. De Cupere VM, Rouxhet PG (2001) Surf Sci 491:395

    Article  Google Scholar 

  12. Chernoff EA, Chernoff DA (1992) J Vac Sci Technol A 10(4):596

    Article  CAS  Google Scholar 

  13. Jiang F, Hörber H, Howard J, Müller DJ (2004) J Struct Biol 148:268

    Article  CAS  Google Scholar 

  14. Graham JS, Vomund AN, Philips CL, Grandbois M (2004) Exp Cell Res 299:335

    Article  CAS  Google Scholar 

  15. Dupont-Gillain CC, Rouxhet PG (2001) Nano Lett 1:245

    Article  CAS  Google Scholar 

  16. Pamula E, De Cupere VM, Dufrene YF, Rouxhet PG (2004) J Colloid Interface Sci 271:80

    Article  CAS  Google Scholar 

  17. Nonogaki T, Xu S, Sato S, Miyata I, Yonese M (2000) Langmuir 16:4272

    Article  CAS  Google Scholar 

  18. Xu S, Yamanaka J, Sato S, Miyata I, Yonese M (2004) Colloid Polym Sci 282:440

    Article  CAS  Google Scholar 

  19. Xu S, Nonogaki T, Tachi K, Sato S, Miyata I, Yamanaka J, Yonese M (2001) Stud Surf Sci Catal 132:889

    Article  CAS  Google Scholar 

  20. Xu S, Sato S, Miyata I, Yamanaka J, Yonese M (2003) Mol Simul 29:711

    Article  CAS  Google Scholar 

  21. Xu S, Song Y, Sato S, Miyata I, Yamanaka J, Yonese M (2005) Colloid Polym Sci 283:383

    Article  CAS  Google Scholar 

  22. Hayashi T, Curran-Patel S, Prockop DJ (1979) Biochemistry 18(19):4182

    Article  CAS  Google Scholar 

  23. Gibson CT, Watson GS, Myhra S (1997) Wear 213:72

    Article  CAS  Google Scholar 

  24. Li J, Wang C, Shang G, Xu Q, Lin Z, Guan J, Bai C (1999) Langmuir 15:7662

    Article  CAS  Google Scholar 

  25. Trelstad RL, Hayashi K, Gross J (1976) Proc Natl Acad Sci USA 73(11):4027

    Article  CAS  Google Scholar 

  26. Bornstein P, Traub W (1979) The chemistry and biology of collagen. In: Neurath H, Hill R (eds) The proteins, vol. 4. Academic, New York, pp. 411–632

    Google Scholar 

  27. Veis A (1964) Macromolecular chemistry of gelatin, chapter 3. Academic, New York, pp 186–202

    Google Scholar 

  28. Liedberg B, Ivarsson B, Lundstrom I, Salaneck WR (1985) Prog Colloid Polym Sci 70:67

    CAS  Google Scholar 

  29. Hillier AC, Kim S, Bard AJ (1996) J Phys Chem 100:18808

    Article  CAS  Google Scholar 

  30. Allan AJG (1958) Lubr Eng 14:211

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shouhong Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, S., Yamanaka, J., Miyata, I. et al. Effects of denaturation and association of collagen on adsorption behavior: two-dimensional nanostructure and its property. Colloid Polym Sci 285, 899–906 (2007). https://doi.org/10.1007/s00396-006-1636-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-006-1636-y

Keywords

Navigation