Skip to main content
Log in

Rheological properties of a surfactant-induced gel for the lysozyme–sodium dodecyl sulfate–water system

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Rheological properties of isotropic solutions and gel structures of lysozyme–sodium dodecyl sulfate mixtures in water are investigated. Isotropic solutions behave as Newtonian fluids with very low viscosity values. For the lysozyme solutions the intrinsic viscosity and the Huggins coefficient were calculated on the basis of the Mooney equation. Above a certain yield stress value, the viscosity of the gel samples decreases continuously in the whole range of the shear rate. Dynamic rheological experiments show weak gel behavior where the storage modulus and the loss modulus are almost parallel and are frequency-dependent. A belated gel stage with very slow kinetics has been characterized. There is a substantial enhancement of the gel strength by ageing since the belated gel stage manifests a higher yield stress value and a higher storage modulus than the initial gel stage. The gels are stable in the temperature range between 10 and 32 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3 a
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8a,b

Similar content being viewed by others

References

  1. Dickinson E (1993) In: Goddard ED, Ananthapadmanabhan KP (eds) Interactions of surfactant with polymers and proteins. CRC, Boca Raton, FL, p 295

  2. Clark AH, Lee-Tuffnell CD (1986) In: Mitchell JR, Ledward DA (eds) Functional properties of food macromolecules. Elsevier, London, p 203

  3. Clark AH, Ross-Murphy SB (1987) Adv Polym Sci 83:57

    CAS  Google Scholar 

  4. Clark AH, Kavanagh GM, Ross. Murphy SB (2001) Food Hydrocolloids 15:383

    Google Scholar 

  5. Doi E (1993) Trends Food Sci Technol 4:1

    CAS  Google Scholar 

  6. Arntfield SD, Bernatsky A (1993) J Agric Food Chem 41:2291

    CAS  Google Scholar 

  7. Kavanagh GM, Clark AH, Gosal WS, Ross-Murphy SB (2000) Macromolecules 33:7029

    Article  CAS  Google Scholar 

  8. Kavanagh GM, Clark AH, Ross-Murphy SB (2002) Rheol Acta 41:276

    Article  CAS  Google Scholar 

  9. Lefebvre J, Renard D, Sanchez-Gimeno AC (1998) Rheol Acta 37:345

    Article  CAS  Google Scholar 

  10. Tobitani A, Ross-Murphy SB (1997) Macromolecules 30:4845

    Article  CAS  Google Scholar 

  11. Tobitani A, Ross-Murphy SB (1997) Langmuir 30:4855

    Article  CAS  Google Scholar 

  12. Nicolai T, Urban C, Schutenberger P (2001) J Colloid Interface Sci 240:419

    Article  CAS  PubMed  Google Scholar 

  13. Richardson RK, Ross-Murphy SB (1981) Brit Polym J 13:11

    CAS  Google Scholar 

  14. Renard D, Robert P, Faucheron S, Sanchez C (1999) Colloids Surf B Biointerfaces 12:113

    Article  CAS  Google Scholar 

  15. Dickinson E (2001) Colloids Surf B Biointerfaces20:197

    Article  CAS  PubMed  Google Scholar 

  16. Ross-Murphy SB, Morris VJ, Morris ER (1983) Faraday Symp Chem Soc 18:115

    Article  Google Scholar 

  17. Ross-Murphy SB (1995) In: Dickinson E (ed) New physico-chemical techniques for the characterization of complex food systems. Blackie, London, p 139

  18. Chronakis IS, Piculell L, Borgström J (1996) Carbohydr Polym 31:215

    Article  CAS  Google Scholar 

  19. Dickinson E (1997) Trends Food Sci Technol 8:334

    Article  CAS  Google Scholar 

  20. Morén AK, Khan A (1995) Langmuir 11:3636

    Google Scholar 

  21. Morén AK, Eskilsson K, Khan A (1997) Colloids Surf B Biointerfaces 9:305

    Article  Google Scholar 

  22. Morén AK, Nydén M, Söderman O, Khan A (1999) Langmuir 15:5480

    Article  Google Scholar 

  23. Palacios AC, Sarnthein-Graf C, La Mesa C (2003) Colloids Surf A Physicochem Eng Asp 1

  24. Morén AK, Khan A (1998) Langmuir 14:6818

    Article  Google Scholar 

  25. Morén AK, Khan A (1999) J Colloid Interface Sci 218:397

    Article  PubMed  Google Scholar 

  26. Morén AK, Regev O, Khan A (2000) J Colloid Interface Sci 222:170

    Article  PubMed  Google Scholar 

  27. Stenstan A, Khan A, Wennerström H (2001) Langmuir 17:7513

    Article  Google Scholar 

  28. Stenstam A, Montalvo G, Grillo I, Gradzielski M (2003) J Phys Chem B 107:12331

    Article  CAS  Google Scholar 

  29. da Silva MA, Arêas EPG (2002) Biophys Chem 99:129

    Article  PubMed  Google Scholar 

  30. Chen J, Dickinson E, Langton M, Hermansson A-M (2000) Lebensm- Wiss Technol 33:299

  31. Dickinson E, Hong S-T (1997) Colloids Surf A Physicochem Eng Asp 127:1

    Article  CAS  Google Scholar 

  32. Demetriades K, McClements D (2000) Colloids Surf A Physicochem Eng Asp 161:391

    Article  CAS  Google Scholar 

  33. Gekko K, Noguchi H (1979) J Phys Chem 83:2706

    CAS  Google Scholar 

  34. Söderman O, Jonströmer M, van Stam J (1993) J Chem Soc Faraday Trans 89:1759

    Article  Google Scholar 

  35. Magid LJ, Li Z, Butler PD (2000) Langmuir 16:10028

    Article  CAS  Google Scholar 

  36. Reiss-Husson F, Luzzati V (1966) J Colloid Interface Sci 21:534

    CAS  Google Scholar 

  37. Einstein A (1906) Ann Phys 19:289

    Google Scholar 

  38. Price WS, Tsuchiya F, Arata Y (1999) J Am Chem Soc 121:11503

    Article  CAS  Google Scholar 

  39. Mooney MJ (1951) Colloid Sci 6:162

    CAS  Google Scholar 

  40. Monkos K (1997) Biochem Biophys Acta 1339:304

    Article  CAS  PubMed  Google Scholar 

  41. Lefebvre J (1982) Rheol Acta 21:620

    Google Scholar 

  42. Monkos K (2000) Biophys Chem 85:7

    Article  CAS  PubMed  Google Scholar 

  43. Hwang J, Kokini JL (1992) Carbohydr Polym 19:31

    Article  Google Scholar 

  44. Castelain C, Doublier JL, Lefebvre J (1987) Carbohydr Polym 7:1

    Article  CAS  Google Scholar 

  45. Monkos K (1994) Int J Biol Macromol 16:31

    Article  CAS  PubMed  Google Scholar 

  46. Valstar A, Brown W, Almgren M (1999) Langmuir 15:2366

    Article  CAS  Google Scholar 

  47. Vasilescu M, Angelescu D, Almgren M, Valstar A (1999) Langmuir 15:2635

    Article  CAS  Google Scholar 

  48. Gimel JC, Brown W (1996) J Chem Phys 104:8112

    Article  CAS  Google Scholar 

  49. Bergström M, Pedersen JS (1999) Phys Chem Chem Phys 1:4437

    Article  Google Scholar 

  50. Barnes HA, Hutton JF, Walters K (1989) An introduction to rheology. Elsevier, Oxford

  51. Kinsella JE (1984) Crit Rev Food Sci Nutr 21:197

    CAS  PubMed  Google Scholar 

  52. Greener J, Contestable BA, Bale MD (1987) Macromolecules 20:2490

    CAS  Google Scholar 

  53. Chen J, Dickinson E (1995) Food Hydrocolloids 9:35

    CAS  Google Scholar 

  54. Dickinson E (1992) An introduction to food colloids. Oxford University Press, Oxford

  55. Dickinson E, Yamamoto Y (1996) J Agric Food Chem 44:1371

    Article  CAS  Google Scholar 

Download references

Acknowledgements

G.M. acknowledgments the Ministerio de Educación y Cultura of Spain for financial support. A. Stenstam is gratefully acknowledged for supplying the Ly(DS)8 protein–surfactant complex and for valuable discussions. M. Valiente and the anonymous second reviewer are thanked for their valuable scientific comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gemma Montalvo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Montalvo, G., Khan, A. Rheological properties of a surfactant-induced gel for the lysozyme–sodium dodecyl sulfate–water system. Colloid Polym Sci 283, 402–412 (2005). https://doi.org/10.1007/s00396-004-1161-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-004-1161-9

Keywords

Navigation