Skip to main content

Advertisement

Log in

Mechanism of the switch from NO to H2O2 in endothelium-dependent vasodilation in diabetes

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Coronary microvascular dysfunction is prevalent among people with diabetes and is correlated with cardiac mortality. Compromised endothelial-dependent dilation (EDD) is an early event in the progression of diabetes, but its mechanisms remain incompletely understood. Nitric oxide (NO) is the major endothelium-dependent vasodilatory metabolite in the healthy coronary circulation, but this switches to hydrogen peroxide (H2O2) in coronary artery disease (CAD) patients. Because diabetes is a significant risk factor for CAD, we hypothesized that a similar NO-to-H2O2 switch would occur in diabetes. Vasodilation was measured ex vivo in isolated coronary arteries from wild type (WT) and microRNA-21 (miR-21) null mice on a chow or high-fat/high-sugar diet, and B6.BKS(D)-Leprdb/J (db/db) mice using myography. Myocardial blood flow (MBF), blood pressure, and heart rate were measured in vivo using contrast echocardiography and a solid-state pressure sensor catheter. RNA from coronary arteries, endothelial cells, and cardiac tissues was analyzed via quantitative real-time PCR for gene expression, and cardiac protein expression was assessed via western blot analyses. Superoxide was detected via electron paramagnetic resonance. (1) Ex vivo coronary EDD and in vivo MBF were impaired in diabetic mice. (2) Nω-Nitro-L-arginine methyl ester, an NO synthase inhibitor (L-NAME), inhibited ex vivo coronary EDD and in vivo MBF in WT. In contrast, polyethylene glycol-catalase, an H2O2 scavenger (Peg-Cat), inhibited diabetic mouse EDD ex vivo and MBF in vivo. (3) miR-21 was upregulated in diabetic mouse endothelial cells, and the deficiency of miR-21 prevented the NO-to-H2O2 switch and ameliorated diabetic mouse vasodilation impairments. (4) Diabetic mice displayed increased serum NO and H2O2, upregulated mRNA expression of Sod1, Sod2, iNos, and Cav1, and downregulated Pgc-1α in coronary arteries, but the deficiency of miR-21 reversed these changes. (5) miR-21-deficient mice exhibited increased cardiac PGC-1α, PPARα and eNOS protein and reduced endothelial superoxide. (6) Inhibition of PGC-1α changed the mRNA expression of genes regulated by miR-21, and overexpression of PGC-1α decreased the expression of miR-21 in high (25.5 mM) glucose treated coronary endothelial cells. Diabetic mice exhibit a NO-to-H2O2 switch in the mediator of coronary EDD, which contributes to microvascular dysfunction and is mediated by miR-21. This study represents the first mouse model recapitulating the NO-to-H2O2 switch seen in CAD patients in diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Allaqaband H, Gutterman DD, Kadlec AO (2018) Physiological consequences of coronary arteriolar dysfunction and its influence on cardiovascular disease. Physiology (Bethesda) 33:338–347. https://doi.org/10.1152/physiol.00019.2018

    Article  CAS  Google Scholar 

  2. Andes LJ, Cheng YJ, Rolka DB, Gregg EW, Imperatore G (2020) Prevalence of prediabetes among adolescents and young adults in the United States, 2005–2016. JAMA Pediatr 174:e194498. https://doi.org/10.1001/jamapediatrics.2019.4498

    Article  Google Scholar 

  3. Aronson D, Edelman ER (2014) Coronary artery disease and diabetes mellitus. Cardiol Clin 32:439–455. https://doi.org/10.1016/j.ccl.2014.04.001

    Article  Google Scholar 

  4. Bagi Z, Koller A, Kaley G (2003) Superoxide-NO interaction decreases flow- and agonist-induced dilations of coronary arterioles in Type 2 diabetes mellitus. Am J Physiol Heart Circ Physiol 285:H1404-1410. https://doi.org/10.1152/ajpheart.00235.2003

    Article  CAS  Google Scholar 

  5. Ben-Nun D, Buja LM, Fuentes F (2020) Prevention of heart failure with preserved ejection fraction (HFpEF): reexamining microRNA-21 inhibition in the era of oligonucleotide-based therapeutics. Cardiovasc Pathol 49:107243. https://doi.org/10.1016/j.carpath.2020.107243

    Article  CAS  Google Scholar 

  6. Beyer AM, Freed JK, Durand MJ, Riedel M, Ait-Aissa K, Green P, Hockenberry JC, Morgan RG, Donato AJ, Peleg R, Gasparri M, Rokkas CK, Santos JH, Priel E, Gutterman DD (2016) Critical role for telomerase in the mechanism of flow-mediated dilation in the human microcirculation. Circ Res 118:856–866. https://doi.org/10.1161/circresaha.115.307918

    Article  CAS  Google Scholar 

  7. Beyer AM, Zinkevich N, Miller B, Liu Y, Wittenburg AL, Mitchell M, Galdieri R, Sorokin A, Gutterman DD (2017) Transition in the mechanism of flow-mediated dilation with aging and development of coronary artery disease. Basic Res Cardiol 112:5. https://doi.org/10.1007/s00395-016-0594-x

    Article  CAS  Google Scholar 

  8. Bijkerk R, Duijs JM, Khairoun M, Ter Horst CJ, van der Pol P, Mallat MJ, Rotmans JI, de Vries AP, de Koning EJ, de Fijter JW, Rabelink TJ, van Zonneveld AJ, Reinders ME (2015) Circulating microRNAs associate with diabetic nephropathy and systemic microvascular damage and normalize after simultaneous pancreas-kidney transplantation. Am J Transplant 15:1081–1090. https://doi.org/10.1111/ajt.13072

    Article  CAS  Google Scholar 

  9. Calo N, Ramadori P, Sobolewski C, Romero Y, Maeder C, Fournier M, Rantakari P, Zhang FP, Poutanen M, Dufour JF, Humar B, Nef S, Foti M (2016) Stress-activated miR-21/miR-21* in hepatocytes promotes lipid and glucose metabolic disorders associated with high-fat diet consumption. Gut 65:1871–1881. https://doi.org/10.1136/gutjnl-2015-310822

    Article  CAS  Google Scholar 

  10. Chen Q, Qiu F, Zhou K, Matlock HG, Takahashi Y, Rajala RVS, Yang Y, Moran E, Ma JX (2017) Pathogenic role of microRNA-21 in diabetic retinopathy through downregulation of PPARα. Diabetes 66:1671–1682. https://doi.org/10.2337/db16-1246

    Article  CAS  Google Scholar 

  11. Chin-Dusting JP, Alexander CT, Arnold PJ, Hodgson WC, Lux AS, Jennings GL (1996) Effects of in vivo and in vitro L-arginine supplementation on healthy human vessels. J Cardiovasc Pharmacol 28:158–166. https://doi.org/10.1097/00005344-199607000-00023

    Article  CAS  Google Scholar 

  12. Cho SY, Kim SH, Yi MH, Zhang E, Kim E, Park J, Jo EK, Lee YH, Park MS, Kim Y, Park J, Kim DW (2017) Expression of PGC1α in glioblastoma multiforme patients. Oncol Lett 13:4055–4076. https://doi.org/10.3892/ol.2017.5972

    Article  CAS  Google Scholar 

  13. Choi M, Lu YW, Zhao J, Wu M, Zhang W, Long X (2020) Transcriptional control of a novel long noncoding RNA Mymsl in smooth muscle cells by a single Cis-element and its initial functional characterization in vessels. J Mol Cell Cardiol 138:147–157. https://doi.org/10.1016/j.yjmcc.2019.11.148

    Article  CAS  Google Scholar 

  14. Choi SK, Galan M, Kassan M, Partyka M, Trebak M, Matrougui K (2012) Poly(ADP-ribose) polymerase 1 inhibition improves coronary arteriole function in type 2 diabetes mellitus. Hypertension 59:1060–1068. https://doi.org/10.1161/hypertensionaha.111.190140

    Article  CAS  Google Scholar 

  15. Couto GK, Britto LR, Mill JG, Rossoni LV (2015) Enhanced nitric oxide bioavailability in coronary arteries prevents the onset of heart failure in rats with myocardial infarction. J Mol Cell Cardiol 86:110–120. https://doi.org/10.1016/j.yjmcc.2015.07.017

    Article  CAS  Google Scholar 

  16. Craige SM, Kroller-Schon S, Li C, Kant S, Cai S, Chen K, Contractor MM, Pei Y, Schulz E, Keaney JF Jr (2016) PGC-1alpha dictates endothelial function through regulation of eNOS expression. Sci Rep 6:38210. https://doi.org/10.1038/srep38210

    Article  CAS  Google Scholar 

  17. Dagamajalu S, Rex DAB, Philem PD, Rainey JK, Keshava Prasad TS (2021) A network map of apelin-mediated signaling. J Cell Commun Signal 16(1):137–143 (Netherlands)

    Article  Google Scholar 

  18. Dai B, Li H, Fan J, Zhao Y, Yin Z, Nie X, Wang DW, Chen C (2018) MiR-21 protected against diabetic cardiomyopathy induced diastolic dysfunction by targeting gelsolin. Cardiovasc Diabetol 17:123. https://doi.org/10.1186/s12933-018-0767-z

    Article  CAS  Google Scholar 

  19. Dang X, Du G, Hu W, Ma L, Wang P, Li Y (2019) Peroxisome proliferator-activated receptor gamma coactivator-1α/HSF1 axis effectively alleviates lipopolysaccharide-induced acute lung injury via suppressing oxidative stress and inflammatory response. J Cell Biochem 120:544–551. https://doi.org/10.1002/jcb.27409

    Article  CAS  Google Scholar 

  20. Ding M, Feng N, Tang D, Feng J, Li Z, Jia M, Liu Z, Gu X, Wang Y, Fu F, Pei J (2018) Melatonin prevents Drp1-mediated mitochondrial fission in diabetic hearts through SIRT1-PGC1alpha pathway. J Pineal Res 65:e12491. https://doi.org/10.1111/jpi.12491

    Article  CAS  Google Scholar 

  21. Dissard R, Klein J, Caubet C, Breuil B, Siwy J, Hoffman J, Sicard L, Ducasse L, Rascalou S, Payre B, Buleon M, Mullen W, Mischak H, Tack I, Bascands JL, Buffin-Meyer B, Schanstra JP (2013) Long term metabolic syndrome induced by a high fat high fructose diet leads to minimal renal injury in C57BL/6 mice. PLoS One 8:e76703. https://doi.org/10.1371/journal.pone.0076703

    Article  CAS  Google Scholar 

  22. Duling DR (1994) Simulation of multiple isotropic spin-trap EPR spectra. J Magn Reson B 104:105–110. https://doi.org/10.1006/jmrb.1994.1062

    Article  CAS  Google Scholar 

  23. Freed JK, Beyer AM, LoGiudice JA, Hockenberry JC, Gutterman DD (2014) Ceramide changes the mediator of flow-induced vasodilation from nitric oxide to hydrogen peroxide in the human microcirculation. Circ Res 115:525–532. https://doi.org/10.1161/CIRCRESAHA.115.303881

    Article  CAS  Google Scholar 

  24. Gomez IG, MacKenna DA, Johnson BG, Kaimal V, Roach AM, Ren S, Nakagawa N, Xin C, Newitt R, Pandya S, Xia TH, Liu X, Borza DB, Grafals M, Shankland SJ, Himmelfarb J, Portilla D, Liu S, Chau BN, Duffield JS (2015) Anti-microRNA-21 oligonucleotides prevent Alport nephropathy progression by stimulating metabolic pathways. J Clin Invest 125:141–156. https://doi.org/10.1172/JCI75852

    Article  Google Scholar 

  25. Hutcheson R, Chaplin J, Hutcheson B, Borthwick F, Proctor S, Gebb S, Jadhav R, Smith E, Russell JC, Rocic P (2014) miR-21 normalizes vascular smooth muscle proliferation and improves coronary collateral growth in metabolic syndrome. Faseb J 28:4088–4099. https://doi.org/10.1096/fj.14-251223

    Article  CAS  Google Scholar 

  26. Hutcheson R, Terry R, Hutcheson B, Jadhav R, Chaplin J, Smith E, Barrington R, Proctor SD, Rocic P (2015) miR-21-mediated decreased neutrophil apoptosis is a determinant of impaired coronary collateral growth in metabolic syndrome. Am J Physiol Heart Circ Physiol 308:H1323-1335. https://doi.org/10.1152/ajpheart.00654.2014

    Article  CAS  Google Scholar 

  27. Jia G, Hill MA, Sowers JR (2018) Diabetic cardiomyopathy: an update of mechanisms contributing to this clinical entity. Circ Res 122:624–638. https://doi.org/10.1161/CIRCRESAHA.117.311586

    Article  CAS  Google Scholar 

  28. Kadlec AO, Barnes C, Durand MJ, Gutterman DD (2018) Microvascular adaptations to exercise: protective effect of PGC-1α. Am J Hypertens 31:240–246. https://doi.org/10.1093/ajh/hpx162

    Article  CAS  Google Scholar 

  29. Kadlec AO, Chabowski DS, Ait-Aissa K, Hockenberry JC, Otterson MF, Durand MJ, Freed JK, Beyer AM, Gutterman DD (2017) PGC-1α (Peroxisome Proliferator-Activated Receptor gamma Coactivator 1-α) overexpression in coronary artery disease recruits NO and hydrogen peroxide during flow-mediated dilation and protects against increased intraluminal pressure. Hypertension 70:166–173. https://doi.org/10.1161/HYPERTENSIONAHA.117.09289

    Article  CAS  Google Scholar 

  30. Kang PT, Chen CL, Ohanyan V, Luther DJ, Meszaros JG, Chilian WM, Chen YR (2015) Overexpressing superoxide dismutase 2 induces a supernormal cardiac function by enhancing redox-dependent mitochondrial function and metabolic dilation. J Mol Cell Cardiol 88:14–28. https://doi.org/10.1016/j.yjmcc.2015.09.001

    Article  CAS  Google Scholar 

  31. Kaur R, Kaur M, Singh J (2018) Endothelial dysfunction and platelet hyperactivity in type 2 diabetes mellitus: molecular insights and therapeutic strategies. Cardiovasc Diabetol 17:121. https://doi.org/10.1186/s12933-018-0763-3

    Article  CAS  Google Scholar 

  32. Keleher MR, Erickson K, Smith HA, Kechris KJ, Yang IV, Dabelea D, Friedman JE, Boyle KE, Jansson T (2021) Placental insulin/IGF-1 signaling, PGC-1α, and inflammatory pathways are associated with metabolic outcomes at 4–6 years of age: the ECHO healthy start cohort. Diabetes 70:745–751. https://doi.org/10.2337/db20-0902

    Article  CAS  Google Scholar 

  33. Labazi H, Trask AJ (2017) Coronary microvascular disease as an early culprit in the pathophysiology of diabetes and metabolic syndrome. Pharmacol Res 123:114–121. https://doi.org/10.1016/j.phrs.2017.07.004

    Article  CAS  Google Scholar 

  34. Langbein H, Brunssen C, Hofmann A, Cimalla P, Brux M, Bornstein SR, Deussen A, Koch E, Morawietz H (2016) NADPH oxidase 4 protects against development of endothelial dysfunction and atherosclerosis in LDL receptor deficient mice. Eur Heart J 37:1753–1761. https://doi.org/10.1093/eurheartj/ehv564

    Article  CAS  Google Scholar 

  35. Lau P, Nixon SJ, Parton RG, Muscat GE (2004) RORα regulates the expression of genes involved in lipid homeostasis in skeletal muscle cells: caveolin-3 and CPT-1 are direct targets of ROR. J Biol Chem 279:36828–36840. https://doi.org/10.1074/jbc.M404927200

    Article  CAS  Google Scholar 

  36. Li X, Wei Y, Wang Z (2018) microRNA-21 and hypertension. Hypertens Res 41:649–661. https://doi.org/10.1038/s41440-018-0071-z

    Article  CAS  Google Scholar 

  37. Liu H, Lessieur EM, Saadane A, Lindstrom SI, Taylor PR, Kern TS (2019) Neutrophil elastase contributes to the pathological vascular permeability characteristic of diabetic retinopathy. Diabetologia 62(12):2365–2374

    Article  CAS  Google Scholar 

  38. Liu Y, Zhao H, Li H, Kalyanaraman B, Nicolosi AC, Gutterman DD (2003) Mitochondrial sources of H2O2 generation play a key role in flow-mediated dilation in human coronary resistance arteries. Circ Res 93:573–580. https://doi.org/10.1161/01.RES.0000091261.19387.AE

    Article  CAS  Google Scholar 

  39. Luo S, Truong AH, Makino A (2016) Isolation of mouse coronary endothelial cells. J Vis Exp. https://doi.org/10.3791/53985

    Article  Google Scholar 

  40. Luther KM, Haar L, McGuinness M, Wang Y, Lynch Iv TL, Phan A, Song Y, Shen Z, Gardner G, Kuffel G, Ren X, Zilliox MJ, Jones WK (2018) Exosomal miR-21a-5p mediates cardioprotection by mesenchymal stem cells. J Mol Cell Cardiol 119:125–137. https://doi.org/10.1016/j.yjmcc.2018.04.012

    Article  CAS  Google Scholar 

  41. Majithiya JB, Paramar AN, Balaraman R (2005) Pioglitazone, a PPARγ agonist, restores endothelial function in aorta of streptozotocin-induced diabetic rats. Cardiovasc Res 66:150–161. https://doi.org/10.1016/j.cardiores.2004.12.025

    Article  CAS  Google Scholar 

  42. Matoba T, Shimokawa H, Nakashima M, Hirakawa Y, Mukai Y, Hirano K, Kanaide H, Takeshita A (2000) Hydrogen peroxide is an endothelium-derived hyperpolarizing factor in mice. J Clin Invest 106:1521–1530. https://doi.org/10.1172/jci10506

    Article  CAS  Google Scholar 

  43. Miura H, Bosnjak JJ, Ning G, Saito T, Miura M, Gutterman DD (2003) Role for hydrogen peroxide in flow-induced dilation of human coronary arterioles. Circ Res 92:e31-40. https://doi.org/10.1161/01.res.0000054200.44505.ab

    Article  CAS  Google Scholar 

  44. Miura H, Wachtel RE, Liu Y, Loberiza FR Jr, Saito T, Miura M, Gutterman DD (2001) Flow-induced dilation of human coronary arterioles: important role of Ca(2+)-activated K(+) channels. Circulation 103:1992–1998. https://doi.org/10.1161/01.cir.103.15.1992

    Article  CAS  Google Scholar 

  45. Murthy VL, Naya M, Foster CR, Gaber M, Hainer J, Klein J, Dorbala S, Blankstein R, Di Carli MF (2012) Association between coronary vascular dysfunction and cardiac mortality in patients with and without diabetes mellitus. Circulation 126:1858–1868. https://doi.org/10.1161/CIRCULATIONAHA.112.120402

    Article  CAS  Google Scholar 

  46. Nishiyama SK, Zhao J, Wray DW, Richardson RS (2017) Vascular function and endothelin-1: tipping the balance between vasodilation and vasoconstriction. J Appl Physiol (1985) 122:354–360. https://doi.org/10.1152/japplphysiol.00772.2016

    Article  CAS  Google Scholar 

  47. Ohanyan V, Yin L, Bardakjian R, Kolz C, Enrick M, Hakobyan T, Kmetz J, Bratz I, Luli J, Nagane M, Khan N, Hou H, Kuppusamy P, Graham J, Fu FK, Janota D, Oyewumi MO, Logan S, Lindner JR, Chilian WM (2015) Requisite role of Kv1.5 channels in coronary metabolic dilation. Circ Res 117:612–621. https://doi.org/10.1161/CIRCRESAHA.115.306642

    Article  CAS  Google Scholar 

  48. Ohanyan V, Yin L, Bardakjian R, Kolz C, Enrick M, Hakobyan T, Luli J, Graham K, Khayata M, Logan S, Kmetz J, Chilian WM (2017) Kv1.3 channels facilitate the connection between metabolism and blood flow in the heart. Microcirculation. https://doi.org/10.1111/micc.12334

    Article  Google Scholar 

  49. Oishi K, Yamamoto S, Itoh N, Nakao R, Yasumoto Y, Tanaka K, Kikuchi Y, Fukudome S, Okita K, Takano-Ishikawa Y (2015) Wheat alkylresorcinols suppress high-fat, high-sucrose diet-induced obesity and glucose intolerance by increasing insulin sensitivity and cholesterol excretion in male mice. J Nutr 145:199–206. https://doi.org/10.3945/jn.114.202754

    Article  CAS  Google Scholar 

  50. Ormazabal V, Nair S, Elfeky O, Aguayo C, Salomon C, Zuniga FA (2018) Association between insulin resistance and the development of cardiovascular disease. Cardiovasc Diabetol 17:122. https://doi.org/10.1186/s12933-018-0762-4

    Article  CAS  Google Scholar 

  51. Park Y, Yang J, Zhang H, Chen X, Zhang C (2011) Effect of PAR2 in regulating TNF-α and NAD(P)H oxidase in coronary arterioles in type 2 diabetic mice. Basic Res Cardiol 106:111–123. https://doi.org/10.1007/s00395-010-0129-9

    Article  CAS  Google Scholar 

  52. Qiao L, Hu S, Liu S, Zhang H, Ma H, Huang K, Li Z, Su T, Vandergriff A, Tang J, Allen T, Dinh PU, Cores J, Yin Q, Li Y, Cheng K (2019) microRNA-21-5p dysregulation in exosomes derived from heart failure patients impairs regenerative potential. J Clin Invest 129:2237–2250. https://doi.org/10.1172/JCI123135

    Article  Google Scholar 

  53. Ramanujam D, Schon AP, Beck C, Vaccarello P, Felician G, Dueck A, Esfandyari D, Meister G, Meitinger T, Schulz C, Engelhardt S (2021) MicroRNA-21-dependent macrophage-to-fibroblast signaling determines the cardiac response to pressure overload. Circulation 143:1513–1525. https://doi.org/10.1161/CIRCULATIONAHA.120.050682

    Article  CAS  Google Scholar 

  54. Ranjan P, Kumari R, Goswami SK, Li J, Pal H, Suleiman Z, Cheng Z, Krishnamurthy P, Kishore R, Verma SK (2021) Myofibroblast-derived exosome induce cardiac endothelial cell dysfunction. Front Cardiovasc Med 8:676267. https://doi.org/10.3389/fcvm.2021.676267

    Article  CAS  Google Scholar 

  55. Rughani A, Friedman JE, Tryggestad JB (2020) Type 2 diabetes in youth: the role of early life exposures. Curr Diab Rep 20:45. https://doi.org/10.1007/s11892-020-01328-6

    Article  Google Scholar 

  56. Sato A, Sakuma I, Gutterman DD (2003) Mechanism of dilation to reactive oxygen species in human coronary arterioles. Am J Physiol Heart Circ Physiol 285:H2345-2354. https://doi.org/10.1152/ajpheart.00458.2003

    Article  CAS  Google Scholar 

  57. Seeger FH, Sedding D, Langheinrich AC, Haendeler J, Zeiher AM, Dimmeler S (2009) Inhibition of the p38 MAP kinase in vivo improves number and functional activity of vasculogenic cells and reduces atherosclerotic disease progression. Basic Res Cardiol 105:389–397. https://doi.org/10.1007/s00395-009-0072-9

    Article  CAS  Google Scholar 

  58. Sekar D, Venugopal B, Sekar P, Ramalingam K (2016) Role of microRNA 21 in diabetes and associated/related diseases. Gene 582:14–18. https://doi.org/10.1016/j.gene.2016.01.039

    Article  CAS  Google Scholar 

  59. Sharabi K, Lin H, Tavares CDJ, Dominy JE, Camporez JP, Perry RJ, Schilling R, Rines AK, Lee J, Hickey M, Bennion M, Palmer M, Nag PP, Bittker JA, Perez J, Jedrychowski MP, Ozcan U, Gygi SP, Kamenecka TM, Shulman GI, Schreiber SL, Griffin PR, Puigserver P (2017) Selective chemical inhibition of PGC-1α gluconeogenic activity ameliorates type 2 diabetes. Cell 169:148–160. https://doi.org/10.1016/j.cell.2017.03.001 (e115)

    Article  CAS  Google Scholar 

  60. Shimokawa H (2010) Hydrogen peroxide as an endothelium-derived hyperpolarizing factor. Pflugers Arch 459:915–922. https://doi.org/10.1007/s00424-010-0790-8

    Article  CAS  Google Scholar 

  61. Simonsen U, Prieto D, Mulvany MJ, Ehrnrooth E, Korsgaard N, Nyborg NC (1992) Effect of induced hypercholesterolemia in rabbits on functional responses of isolated large proximal and small distal coronary arteries. Arterioscler Thromb 12:380–392. https://doi.org/10.1161/01.atv.12.3.380

    Article  CAS  Google Scholar 

  62. St-Pierre J, Drori S, Uldry M, Silvaggi JM, Rhee J, Jager S, Handschin C, Zheng K, Lin J, Yang W, Simon DK, Bachoo R, Spiegelman BM (2006) Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators. Cell 127:397–408. https://doi.org/10.1016/j.cell.2006.09.024

    Article  CAS  Google Scholar 

  63. Surwit RS, Kuhn CM, Cochrane C, McCubbin JA, Feinglos MN (1988) Diet-induced type II diabetes in C57BL/6J mice. Diabetes 37:1163–1167. https://doi.org/10.2337/diab.37.9.1163

    Article  CAS  Google Scholar 

  64. Takaki A, Morikawa K, Tsutsui M, Murayama Y, Tekes E, Yamagishi H, Ohashi J, Yada T, Yanagihara N, Shimokawa H (2008) Crucial role of nitric oxide synthases system in endothelium-dependent hyperpolarization in mice. J Exp Med 205:2053–2063. https://doi.org/10.1084/jem.20080106

    Article  CAS  Google Scholar 

  65. Tavares CDJ, Aigner S, Sharabi K, Sathe S, Mutlu B, Yeo GW, Puigserver P (2020) Transcriptome-wide analysis of PGC-1α-binding RNAs identifies genes linked to glucagon metabolic action. Proc Natl Acad Sci USA 117:22204–22213. https://doi.org/10.1073/pnas.2000643117

    Article  CAS  Google Scholar 

  66. Urbich C, Kuehbacher A, Dimmeler S (2008) Role of microRNAs in vascular diseases, inflammation, and angiogenesis. Cardiovasc Res 79:581–588. https://doi.org/10.1093/cvr/cvn156

    Article  CAS  Google Scholar 

  67. van de Wouw J, Sorop O, van Drie RWA, van Duin RWB, Nguyen ITN, Joles JA, Verhaar MC, Merkus D, Duncker DJ (2020) Perturbations in myocardial perfusion and oxygen balance in swine with multiple risk factors: a novel model of ischemia and no obstructive coronary artery disease. Basic Res Cardiol 115:21. https://doi.org/10.1007/s00395-020-0778-2

    Article  CAS  Google Scholar 

  68. Wang D, Deuse T, Stubbendorff M, Chernogubova E, Erben RG, Eken SM, Jin H, Li Y, Busch A, Heeger CH, Behnisch B, Reichenspurner H, Robbins RC, Spin JM, Tsao PS, Schrepfer S, Maegdefessel L (2015) Local microRNA modulation using a novel anti-miR-21-eluting stent effectively prevents experimental in-stent restenosis. Arterioscler Thromb Vasc Biol 35:1945–1953. https://doi.org/10.1161/ATVBAHA.115.305597

    Article  CAS  Google Scholar 

  69. Wang Z, Wu Y, Zhang S, Zhao Y, Yin X, Wang W, Ma X, Liu H (2019) The role of NO-cGMP pathway inhibition in vascular endothelial-dependent smooth muscle relaxation disorder of AT1-AA positive rats: protective effects of adiponectin. Nitric Oxide 87:10–22. https://doi.org/10.1016/j.niox.2019.02.006

    Article  CAS  Google Scholar 

  70. Weber M, Baker MB, Moore JP, Searles CD (2010) MiR-21 is induced in endothelial cells by shear stress and modulates apoptosis and eNOS activity. Biochem Biophys Res Commun 393:643–648. https://doi.org/10.1016/j.bbrc.2010.02.045

    Article  CAS  Google Scholar 

  71. Weil BR, Canty JM Jr (2014) Ceramide signaling in the coronary microcirculation: a double-edged sword? Circ Res 115:475–477. https://doi.org/10.1161/circresaha.114.304589

    Article  CAS  Google Scholar 

  72. Weitzberg E, Hezel M, Lundberg JO (2010) Nitrate-nitrite-nitric oxide pathway: implications for anesthesiology and intensive care. Anesthesiology 113:1460–1475. https://doi.org/10.1097/ALN.0b013e3181fcf3cc

    Article  CAS  Google Scholar 

  73. Xu X, Jiao X, Song N, Luo W, Liang M, Ding X, Teng J (2017) Role of miR21 on vascular endothelial cells in the protective effect of renal delayed ischemic preconditioning. Mol Med Rep 16:2627–2635. https://doi.org/10.3892/mmr.2017.6870

    Article  CAS  Google Scholar 

  74. Xu Y, Zalzala M, Xu J, Li Y, Yin L, Zhang Y (2015) A metabolic stress-inducible miR-34a-HNF4alpha pathway regulates lipid and lipoprotein metabolism. Nat Commun 6:7466. https://doi.org/10.1038/ncomms8466

    Article  CAS  Google Scholar 

  75. Zhang Z, Peng H, Chen J, Chen X, Han F, Xu X, He X, Yan N (2009) MicroRNA-21 protects from mesangial cell proliferation induced by diabetic nephropathy in db/db mice. FEBS Lett 583:2009–2014. https://doi.org/10.1016/j.febslet.2009.05.021

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Laura Zhang for illustrating Supplementary Figure 3.

Funding

This research is funded by National Institutes of Health grant 2R01HL103227-05 (YZ, LY), 1R01HL135110-01 (WMC, LY), 1 R01 HL137008-01A1 (LY), and F31HL156726 (CJ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liya Yin.

Ethics declarations

Conflict of interest

The corresponding author states that there is no conflict of interest on behalf of all authors.

Additional information

The previous version of this manuscript (R1) was uploaded to bioRxiv (https://doi.org/10.1101/2021.05.18.444667).

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1027 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Juguilon, C., Wang, Z., Wang, Y. et al. Mechanism of the switch from NO to H2O2 in endothelium-dependent vasodilation in diabetes. Basic Res Cardiol 117, 2 (2022). https://doi.org/10.1007/s00395-022-00910-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00395-022-00910-1

Keywords

Navigation