Skip to main content
Log in

Disruption of adenylyl cyclase type 5 mimics exercise training

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Exercise training is key to healthful longevity. Since exercise training compliance is difficult, it would be useful to have a therapeutic substitute that mimicked exercise training. We compared the effects of exercise training in wild-type (WT) littermates with adenylyl cyclase type 5 knock out (AC5 KO) mice, a model of enhanced exercise performance. Exercise performance, measured by maximal distance and work to exhaustion, was increased in exercise-trained WT to levels already attained in untrained AC5 KO. Exercise training in AC5 KO further enhanced their exercise performance. The key difference in untrained AC5 KO and exercise-trained WT was the β-adrenergic receptor signaling, which was decreased in untrained AC5 KO compared to untrained WT but was increased in WT with exercise training. Despite this key difference, untrained AC5 KO and exercise-trained WT mice shared similar gene expression, determined by deep sequencing, in their gastrocnemius muscle with 183 genes commonly up or down-regulated, mainly involving muscle contraction, metabolism and mitochondrial function. The SIRT1/PGC-1α pathway partially mediated the enhanced exercise in both AC5 KO and exercise-trained WT mice, as reflected in the reduced exercise responses after administering a SIRT1 inhibitor, but did not abolish the enhanced exercise performance in the AC5 KO compared to untrained WT. Increasing oxidative stress with paraquat attenuated exercise performance more in untrained WT than untrained AC5 KO, reflecting the augmented oxidative stress protection in AC5 KO. Blocking nitric oxide actually reduced the enhanced exercise performance in untrained AC5 KO and trained WT to levels below untrained WT, demonstrating the importance of this mechanism. These results suggest that AC5 KO mice, without exercise training, share similar mechanisms responsible for enhanced exercise capacity with chronic exercise training, most importantly increased nitric oxide, and demonstrate more reserve with the addition of exercise training. A novel feature of the enhanced exercise performance in untrained AC5 KO mice is their decreased sympathetic tone, which is also beneficial to patients with cardiovascular disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Beloka S, Gujic M, Deboeck G, Niset G, Ciarka A, Argacha JF, Adamopoulos D, Van de Borne P, Naeije R (2008) Beta-adrenergic blockade and metabo-chemoreflex contributions to exercise capacity. Med Sci Sports Exerc 40:1932–1938. doi:10.1249/MSS.0b013e31817fbe11

    Article  CAS  PubMed  Google Scholar 

  2. Braga VA, Couto GK, Lazzarin MC, Rossoni LV, Medeiros A (2015) Aerobic exercise training prevents the onset of endothelial dysfunction via increased nitric oxide bioavailability and reduced reactive oxygen species in an experimental model of menopause. PLoS ONE 10:e0125388. doi:10.1371/journal.pone.0125388

    Article  PubMed  PubMed Central  Google Scholar 

  3. Buckenmeyer PJ, Goldfarb AH, Partilla JS, Pineyro MA, Dax EM (1990) Endurance training, not acute exercise, differentially alters beta-receptors and cyclase in skeletal fiber types. Am J of Physiol 258:E71–E77

    CAS  Google Scholar 

  4. Chen X, An X, Chen D, Ye M, Shen W, Han W, Zhang Y, Gao P (2016) Chronic exercise training improved aortic endothelial and mitochondrial function via an AMPKalpha2-dependent manner. Front Physiol 7:631. doi:10.3389/fphys.2016.00631

    PubMed  PubMed Central  Google Scholar 

  5. Davidson SR, Burnett M, Hoffman-Goetz L (2006) Training effects in mice after long-term voluntary exercise. Med Sci Sports Exerc 38:250–255. doi:10.1249/01.mss.0000183179.86594.4f

    Article  PubMed  Google Scholar 

  6. De Palma C, Morisi F, Pambianco S, Assi E, Touvier T, Russo S, Perrotta C, Romanello V, Carnio S, Cappello V, Pellegrino P, Moscheni C, Bassi MT, Sandri M, Cervia D, Clementi E (2014) Deficient nitric oxide signalling impairs skeletal muscle growth and performance: involvement of mitochondrial dysregulation. Skelet Muscle 4:22. doi:10.1186/s13395-014-0022-6

    Article  PubMed  PubMed Central  Google Scholar 

  7. Dohm GL, Pennington SN, Barakat H (1976) Effect of exercise training on adenyl cyclase and phosphodiesterase in skeletal muscle, heart, and liver. Biochem Med 16:138–142

    Article  CAS  PubMed  Google Scholar 

  8. Durrant JR, Seals DR, Connell ML, Russell MJ, Lawson BR, Folian BJ, Donato AJ, Lesniewski LA (2009) Voluntary wheel running restores endothelial function in conduit arteries of old mice: direct evidence for reduced oxidative stress, increased superoxide dismutase activity and down-regulation of NADPH oxidase. J Physiol 587:3271–3285. doi:10.1113/jphysiol.2009.169771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Esposito G, Perrino C, Ozaki T, Takaoka H, Defer N, Petretta MP, De Angelis MC, Mao L, Hanoune J, Rockman HA, Chiariello M (2008) Increased myocardial contractility and enhanced exercise function in transgenic mice overexpressing either adenylyl cyclase 5 or 8. Basic Res Cardiol 103:22–30. doi:10.1007/s00395-007-0688-6

    Article  PubMed  Google Scholar 

  10. Ferrara N, Rinaldi B, Corbi G, Conti V, Stiuso P, Boccuti S, Rengo G, Rossi F, Filippelli A (2008) Exercise training promotes SIRT1 activity in aged rats. Rejuvenation Res 11:139–150. doi:10.1089/rej.2007.0576

    Article  CAS  PubMed  Google Scholar 

  11. Huang CC, Wang T, Tung YT, Lin WT (2016) Effect of exercise training on skeletal muscle SIRT1 and PGC-1alpha expression levels in rats of different age. Int J Med Sci 13:260–270. doi:10.7150/ijms.14586

    Article  PubMed  PubMed Central  Google Scholar 

  12. Ito D, Ito O, Mori N, Cao P, Suda C, Muroya Y, Hao K, Shimokawa H, Kohzuki M (2013) Exercise training upregulates nitric oxide synthases in the kidney of rats with chronic heart failure. Clin Exp Pharmacol Physiol 40:617–625. doi:10.1111/1440-1681.12130

    Article  CAS  PubMed  Google Scholar 

  13. Ji LL, Lennon DL, Kochan RG, Nagle FJ, Lardy HA (1986) Enzymatic adaptation to physical training under beta-blockade in the rat. Evidence of a beta 2-adrenergic mechanism in skeletal muscle. J Clin Invest 78:771–778. doi:10.1172/JCI112639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Khaledi N, Fayazmilani R, Gaeini AA, Javeri A (2016) Progressive resistance training modulates the expression of ACTN2 and ACTN3 genes and proteins in the skeletal muscles. Am J Sports Sci Med 4:26–32. doi:10.12691/ajssm-4-2-1

    Google Scholar 

  15. Kim SJ, Ghaleh B, Kudej RK, Huang CH, Hintze TH, Vatner SF (1997) Delayed enhanced nitric oxide-mediated coronary vasodilation following brief ischemia and prolonged reperfusion in conscious dogs. Circ Res 81:53–59. doi:10.1161/01.RES.81.1.53

    Article  CAS  PubMed  Google Scholar 

  16. Kubon C, Mistry NB, Grundvold I, Halvorsen S, Kjeldsen SE, Westheim AS (2011) The role of beta-blockers in the treatment of chronic heart failure. Trends Pharmacol Sci 32:206–212. doi:10.1016/j.tips.2011.01.006

    Article  CAS  PubMed  Google Scholar 

  17. Lacerda AC, Marubayashi U, Balthazar CH, Leite LH, Coimbra CC (2006) Central nitric oxide inhibition modifies metabolic adjustments induced by exercise in rats. Neurosci Lett 410:152–156. doi:10.1016/j.neulet.2006.09.067

    Article  CAS  PubMed  Google Scholar 

  18. Lambernd S, Taube A, Schober A, Platzbecker B, Gorgens SW, Schlich R, Jeruschke K, Weiss J, Eckardt K, Eckel J (2012) Contractile activity of human skeletal muscle cells prevents insulin resistance by inhibiting pro-inflammatory signalling pathways. Diabetologia 55:1128–1139. doi:10.1007/s00125-012-2454-z

    Article  CAS  PubMed  Google Scholar 

  19. Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10:R25. doi:10.1186/gb-2009-10-3-r25

    Article  PubMed  PubMed Central  Google Scholar 

  20. Lawler JM, Kwak HB, Kim JH, Suk MH (2009) Exercise training inducibility of MnSOD protein expression and activity is retained while reducing prooxidant signaling in the heart of senescent rats. Am J Physiol Regul Integr Comp Physiol 296:R1496–R1502. doi:10.1152/ajpregu.90314.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lee-Young RS, Ayala JE, Hunley CF, James FD, Bracy DP, Kang L, Wasserman DH (2010) Endothelial nitric oxide synthase is central to skeletal muscle metabolic regulation and enzymatic signaling during exercise in vivo. Am J Physiol Regul Integr Comp Physiol 298:R1399–R1408. doi:10.1152/ajpregu.00004.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Liu F, Chen Y, Feng X, Teng Z, Yuan Y, Bin J (2014) Effects of beta-blockers on heart failure with preserved ejection fraction: a meta-analysis. PLoS ONE 9:e90555. doi:10.1371/journal.pone.0090555

    Article  PubMed  PubMed Central  Google Scholar 

  23. Martin WH 3rd, Coggan AR, Spina RJ, Saffitz JE (1989) Effects of fiber type and training on beta-adrenoceptor density in human skeletal muscle. Am J Physiol 257:E736–E742

    CAS  PubMed  Google Scholar 

  24. Mattagajasingh I, Kim CS, Naqvi A, Yamamori T, Hoffman TA, Jung SB, DeRicco J, Kasuno K, Irani K (2007) SIRT1 promotes endothelium-dependent vascular relaxation by activating endothelial nitric oxide synthase. Proc Natl Acad Sci USA 104:14855–14860. doi:10.1073/pnas.0704329104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. McConell GK, Rattigan S, Lee-Young RS, Wadley GD, Merry TL (2012) Skeletal muscle nitric oxide signaling and exercise: a focus on glucose metabolism. Am J Physiol Endocrinol Metab 303:E301–E307. doi:10.1152/ajpendo.00667.2011

    Article  CAS  PubMed  Google Scholar 

  26. Michel-Reher MB, Michel MC (2015) Regulation of GAPDH expression by treatment with the beta-adrenoceptor agonist isoprenaline—is GADPH a suitable loading control in immunoblot experiments? Naunyn Schmiedebergs Arch Pharmacol 388:1119–1120. doi:10.1007/s00210-015-1166-6

    Article  CAS  PubMed  Google Scholar 

  27. Nisoli E, Tonello C, Cardile A, Cozzi V, Bracale R, Tedesco L, Falcone S, Valerio A, Cantoni O, Clementi E, Moncada S, Carruba MO (2005) Calorie restriction promotes mitochondrial biogenesis by inducing the expression of eNOS. Science 310:314–317. doi:10.1126/science.1117728

    Article  CAS  PubMed  Google Scholar 

  28. Ren WJ, Yang XD, Jiang XG, Li Z, Zhang ZX (2010) Chronic hypoxia and exercise training affect the NO content and NOS activity of rat skeletal muscle. Int Sportmed J 11:244–257

    Google Scholar 

  29. Rockl KS, Hirshman MF, Brandauer J, Fujii N, Witters LA, Goodyear LJ (2007) Skeletal muscle adaptation to exercise training: AMP-activated protein kinase mediates muscle fiber type shift. Diabetes 56:2062–2069

    Article  CAS  PubMed  Google Scholar 

  30. Tsukiyama Y, Ito T, Nagaoka K, Eguchi E, Ogino K (2017) Effects of exercise training on nitric oxide, blood pressure and antioxidant enzymes. J Clin Biochem Nutr 60:180–186. doi:10.3164/jcbn.16-108

    Article  PubMed  PubMed Central  Google Scholar 

  31. Vatner DE, Yan L, Lai L, Yuan C, Mouchiroud L, Pachon RE, Zhang J, Dillinger JG, Houtkooper RH, Auwerx J, Vatner SF (2015) Type 5 adenylyl cyclase disruption leads to enhanced exercise performance. Aging Cell 14:1075–1084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wang YX, Zhang CL, Yu RT, Cho HK, Nelson MC, Bayuga-Ocampo CR, Ham J, Kang H, Evans RM (2004) Regulation of muscle fiber type and running endurance by PPARdelta. PLoS Biol 2:e294. doi:10.1371/journal.pbio.0020294

    Article  PubMed  PubMed Central  Google Scholar 

  33. Williams RS, Caron MG, Daniel K (1984) Skeletal muscle beta-adrenergic receptors: variations due to fiber type and training. Am J Physiol 246:E160–E167

    CAS  PubMed  Google Scholar 

  34. Wright DC, Han DH, Garcia-Roves PM, Geiger PC, Jones TE, Holloszy JO (2007) Exercise-induced mitochondrial biogenesis begins before the increase in muscle PGC-1alpha expression. J Biol Chem 282:194–199. doi:10.1074/jbc.M606116200

    Article  CAS  PubMed  Google Scholar 

  35. Xia N, Strand S, Schlufter F, Siuda D, Reifenberg G, Kleinert H, Forstermann U, Li H (2013) Role of SIRT1 and FOXO factors in eNOS transcriptional activation by resveratrol. Nitric Oxide 32:29–35. doi:10.1016/j.niox.2013.04.001

    Article  CAS  PubMed  Google Scholar 

  36. Yan Z, Okutsu M, Akhtar YN, Lira VA (1985) Regulation of exercise-induced fiber type transformation, mitochondrial biogenesis, and angiogenesis in skeletal muscle. J Appl Physiol 110:264–274. doi:10.1152/japplphysiol.00993.2010

    Article  Google Scholar 

  37. Young DR, Haskell WL, Jatulis DE, Fortmann SP (1993) Associations between changes in physical activity and risk factors for coronary heart disease in a community-based sample of men and women: the Stanford Five-City Project. Am J Epidemiol 138:205–216

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Gopal Babu for generating AC5 floxed mice. We thank Dr. Xiangzhen Sui for her work on the biochemical studies. We thank Dr. Yimin Tian for her work on the histological analyses.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dorothy E. Vatner or Stephen F. Vatner.

Ethics declarations

Conflict of interest

JJG, JZ, SCC, and MO declare that they have no conflict of interest. DEV and SFV have a company involved in developing AC5 inhibitors for cardioprotection. Exercise is not being pursued by this company and this entire study was supported by the NIH grants listed.

Disclosure

Drs. Dorothy and Stephen Vatner have a company involved in developing AC5 inhibitors for cardioprotection. Exercise is not being pursued by this company and this entire study was supported by the NIH grants listed.

Funding resources

This work was supported by National Institute of Health grants P01AG027211, R01HL102472, T32HL069752, P01HL069020, R01HL106511, R01HL093481, R01HL119464, R01HL124282, R01HL106511, and R01HL130848.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guers, J.J., Zhang, J., Campbell, S.C. et al. Disruption of adenylyl cyclase type 5 mimics exercise training. Basic Res Cardiol 112, 59 (2017). https://doi.org/10.1007/s00395-017-0648-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00395-017-0648-8

Keywords

Navigation