Skip to main content

Advertisement

Log in

Aquaporin 1 controls the functional phenotype of pulmonary smooth muscle cells in hypoxia-induced pulmonary hypertension

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Vascular remodelling in hypoxia-induced pulmonary hypertension (PH) is driven by excessive proliferation and migration of endothelial and smooth muscle cells. The expression of aquaporin 1 (AQP1), an integral membrane water channel protein involved in the control of these processes, is tightly regulated by oxygen levels. The role of AQP1 in the pathogenesis of PH, however, has not been directly addressed so far. This study was designed to characterize expression and function of AQP1 in pulmonary vascular cells from human arteries and in the mouse model of hypoxia-induced PH. Exposure of human pulmonary vascular cells to hypoxia significantly induced the expression of AQP1. Similarly, levels of AQP1 were found to be upregulated in lungs of mice with hypoxia-induced PH. The functional role of AQP1 was further tested in human pulmonary artery smooth muscle cells demonstrating that depletion of AQP1 reduced proliferation, the migratory potential, and, conversely, increased apoptosis of these cells. This effect was associated with higher expression of the tumour suppressor gene p53. Using the mouse model of hypoxia-induced PH, application of GapmeR inhibitors targeting AQP1 abated the hypoxia-induced upregulation of AQP1 and, of note, reversed PH by decreasing both right ventricular pressure and hypertrophy back to the levels of control mice. Our data suggest an important functional role of AQP1 in the pathobiology of hypoxia-induced PH. These results offer novel insights in our pathogenetic understanding of the disease and propose AQP1 as potential therapeutic in vivo target.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Abreu-Rodriguez I, Sanchez Silva R, Martins AP, Soveral G, Toledo-Aral JJ, Lopez-Barneo J, Echevarria M (2011) Functional and transcriptional induction of aquaporin-1 gene by hypoxia; analysis of promoter and role of Hif-1alpha. PLoS One 6:e28385. doi:10.1371/journal.pone.0028385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Al Ghouleh I, Frazziano G, Rodriguez AI, Csanyi G, Maniar S, St Croix CM, Kelley EE, Egana LA, Song GJ, Bisello A, Lee YJ, Pagano PJ (2013) Aquaporin 1, Nox1, and Ask1 mediate oxidant-induced smooth muscle cell hypertrophy. Cardiovasc Res 97:134–142. doi:10.1093/cvr/cvs295

    Article  CAS  PubMed  Google Scholar 

  3. Brock M, Haider TJ, Vogel J, Gassmann M, Speich R, Trenkmann M, Ulrich S, Kohler M, Huber LC (2015) The hypoxia-induced microRNA-130a controls pulmonary smooth muscle cell proliferation by directly targeting CDKN1A. Int J Biochem Cell Biol 61:129–137. doi:10.1016/j.biocel.2015.02.002

    Article  CAS  PubMed  Google Scholar 

  4. Brock M, Samillan VJ, Trenkmann M, Schwarzwald C, Ulrich S, Gay RE, Gassmann M, Ostergaard L, Gay S, Speich R, Huber LC (2014) AntagomiR directed against miR-20a restores functional BMPR2 signalling and prevents vascular remodelling in hypoxia-induced pulmonary hypertension. Eur Heart J 35:3203–3211. doi:10.1093/eurheartj/ehs060

    Article  CAS  PubMed  Google Scholar 

  5. Dorfmuller P, Humbert M (2012) Progress in pulmonary arterial hypertension pathology: relighting a torch inside the tunnel. Am J Respir Crit Care Med 186:210–212. doi:10.1164/rccm.201206-1049ED

    Article  CAS  PubMed  Google Scholar 

  6. Galan-Cobo A, Ramirez-Lorca R, Toledo-Aral JJ, Echevarria M (2016) Aquaporin-1 plays important role in proliferation by affecting cell cycle progression. J Cell Physiol 231:243–256. doi:10.1002/jcp.25078

    Article  CAS  PubMed  Google Scholar 

  7. Godinas L, Guignabert C, Seferian A, Perros F, Bergot E, Sibille Y, Humbert M, Montani D (2013) Tyrosine kinase inhibitors in pulmonary arterial hypertension: a double-edge sword? Semin Respir Crit Care Med 34:714–724. doi:10.1055/s-0033-1356494

    Article  PubMed  Google Scholar 

  8. Gomez-Arroyo J, Saleem SJ, Mizuno S, Syed AA, Bogaard HJ, Abbate A, Taraseviciene-Stewart L, Sung Y, Kraskauskas D, Farkas D, Conrad DH, Nicolls MR, Voelkel NF (2012) A brief overview of mouse models of pulmonary arterial hypertension: problems and prospects. Am J Physiol Lung Cell Mol Physiol 302:L977–L991. doi:10.1152/ajplung.00362.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Huber LC, Bye H, Brock M (2015) The pathogenesis of pulmonary hypertension—an update. Swiss Med Wkly 145:w14202. doi:10.4414/smw.2015.14202

    PubMed  Google Scholar 

  10. Huber LC, Ulrich S, Leuenberger C, Gassmann M, Vogel J, von Blotzheim LG, Speich R, Kohler M, Brock M (2015) microRNA-125a in pulmonary hypertension: regulator of a proliferative phenotype of endothelial cells. Exp Biol Med (Maywood) 240:1580–1589. doi:10.1177/1535370215579018

    Article  CAS  Google Scholar 

  11. Jacquin S, Rincheval V, Mignotte B, Richard S, Humbert M, Mercier O, Londono-Vallejo A, Fadel E, Eddahibi S (2015) Inactivation of p53 is sufficient to induce development of pulmonary hypertension in rats. PLoS One 10:e0131940. doi:10.1371/journal.pone.0131940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kakiuchi-Kiyota S, Koza-Taylor PH, Mantena SR, Nelms LF, Enayetallah AE, Hollingshead BD, Burdick AD, Reed LA, Warneke JA, Whiteley LO, Ryan AM, Mathialagan N (2014) Comparison of hepatic transcription profiles of locked ribonucleic acid antisense oligonucleotides: evidence of distinct pathways contributing to non-target mediated toxicity in mice. Toxicol Sci 138:234–248. doi:10.1093/toxsci/kft278

    Article  CAS  PubMed  Google Scholar 

  13. Lai N, Lade J, Leggett K, Yun X, Baksh S, Chau E, Crow MT, Sidhaye V, Wang J, Shimoda LA (2014) The aquaporin 1 C-terminal tail is required for migration and growth of pulmonary arterial myocytes. Am J Respir Cell Mol Biol 50:1010–1020. doi:10.1165/rcmb.2013-0374OC

    Article  PubMed  Google Scholar 

  14. Leggett K, Maylor J, Undem C, Lai N, Lu W, Schweitzer K, King LS, Myers AC, Sylvester JT, Sidhaye V, Shimoda LA (2012) Hypoxia-induced migration in pulmonary arterial smooth muscle cells requires calcium-dependent upregulation of aquaporin 1. Am J Physiol Lung Cell Mol Physiol 303:L343–L353. doi:10.1152/ajplung.00130.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Maarman G, Lecour S, Butrous G, Thienemann F, Sliwa K (2013) A comprehensive review: the evolution of animal models in pulmonary hypertension research; are we there yet? Pulm Circ 3:739–756. doi:10.1086/674770

    Article  PubMed  PubMed Central  Google Scholar 

  16. Mizuno S, Bogaard HJ, Kraskauskas D, Alhussaini A, Gomez-Arroyo J, Voelkel NF, Ishizaki T (2011) p53 Gene deficiency promotes hypoxia-induced pulmonary hypertension and vascular remodeling in mice. Am J Physiol Lung Cell Mol Physiol 300:L753–L761. doi:10.1152/ajplung.00286.2010

    Article  CAS  PubMed  Google Scholar 

  17. Mizuno S, Kadowaki M, Demura Y, Ameshima S, Miyamori I, Ishizaki T (2004) p42/44 Mitogen-activated protein kinase regulated by p53 and nitric oxide in human pulmonary arterial smooth muscle cells. Am J Respir Cell Mol Biol 31:184–192. doi:10.1165/rcmb.2003-0397OC

    Article  CAS  PubMed  Google Scholar 

  18. Moon C, Preston GM, Griffin CA, Jabs EW, Agre P (1993) The human aquaporin-CHIP gene. Structure, organization, and chromosomal localization. J Biol Chem 268:15772–15778

    CAS  PubMed  Google Scholar 

  19. Nicolls MR, Mizuno S, Taraseviciene-Stewart L, Farkas L, Drake JI, Al Husseini A, Gomez-Arroyo JG, Voelkel NF, Bogaard HJ (2012) New models of pulmonary hypertension based on VEGF receptor blockade-induced endothelial cell apoptosis. Pulm Circ 2:434–442. doi:10.4103/2045-8932.105031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Perros F, Dorfmuller P, Humbert M (2005) Current insights on the pathogenesis of pulmonary arterial hypertension. Semin Respir Crit Care Med 26:355–364. doi:10.1055/s-2005-916149

    Article  PubMed  Google Scholar 

  21. Reinhart-King CA (2008) Endothelial cell adhesion and migration. Methods Enzymol 443:45–64. doi:10.1016/S0076-6879(08)02003-X

    Article  CAS  PubMed  Google Scholar 

  22. Rutkovskiy A, Bliksoen M, Hillestad V, Amin M, Czibik G, Valen G, Vaage J, Amiry-Moghaddam M, Stenslokken KO (2013) Aquaporin-1 in cardiac endothelial cells is downregulated in ischemia, hypoxia and cardioplegia. J Mol Cell Cardiol 56:22–33. doi:10.1016/j.yjmcc.2012.12.002

    Article  CAS  PubMed  Google Scholar 

  23. Saadoun S, Papadopoulos MC, Hara-Chikuma M, Verkman AS (2005) Impairment of angiogenesis and cell migration by targeted aquaporin-1 gene disruption. Nature 434:786–792. doi:10.1038/nature03460

    Article  CAS  PubMed  Google Scholar 

  24. Schermuly RT, Ghofrani HA, Wilkins MR, Grimminger F (2011) Mechanisms of disease: pulmonary arterial hypertension. Nat Rev Cardiol 8:443–455. doi:10.1038/nrcardio.2011.87

    Article  CAS  PubMed  Google Scholar 

  25. Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 3:1101–1108

    Article  CAS  PubMed  Google Scholar 

  26. Semenza GL (2011) Oxygen sensing, homeostasis, and disease. N Engl J Med 365:537–547. doi:10.1056/NEJMra1011165

    Article  CAS  PubMed  Google Scholar 

  27. She J, Bi J, Tong L, Song Y, Bai C (2013) New insights of aquaporin 5 in the pathogenesis of high altitude pulmonary edema. Diagn Pathol 8:193. doi:10.1186/1746-1596-8-193

    Article  PubMed  PubMed Central  Google Scholar 

  28. Simonneau G, Gatzoulis MA, Adatia I, Celermajer D, Denton C, Ghofrani A, Gomez Sanchez MA, Krishna Kumar R, Landzberg M, Machado RF, Olschewski H, Robbins IM, Souza R (2013) Updated clinical classification of pulmonary hypertension. J Am Coll Cardiol 62:D34–D41. doi:10.1016/j.jacc.2013.10.029

    Article  PubMed  Google Scholar 

  29. Soubrier F, Chung WK, Machado R, Grunig E, Aldred M, Geraci M, Loyd JE, Elliott CG, Trembath RC, Newman JH, Humbert M (2013) Genetics and genomics of pulmonary arterial hypertension. J Am Coll Cardiol 62:D13–D21. doi:10.1016/j.jacc.2013.10.035

    Article  CAS  PubMed  Google Scholar 

  30. Souza R, Simonneau G (2014) Reply: pulmonary hypertension of sickle cell disease beyond classification constraints. J Am Coll Cardiol 63:2882–2883. doi:10.1016/j.jacc.2014.03.044

    Article  PubMed  Google Scholar 

  31. Straarup EM, Fisker N, Hedtjarn M, Lindholm MW, Rosenbohm C, Aarup V, Hansen HF, Orum H, Hansen JB, Koch T (2010) Short locked nucleic acid antisense oligonucleotides potently reduce apolipoprotein B mRNA and serum cholesterol in mice and non-human primates. Nucleic Acids Res 38:7100–7111. doi:10.1093/nar/gkq457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Suzuki K, Matsubara H (2011) Recent advances in p53 research and cancer treatment. J Biomed Biotechnol 2011:978312. doi:10.1155/2011/978312

    PubMed  PubMed Central  Google Scholar 

  33. Veedu RN, Wengel J (2010) Locked nucleic acids: promising nucleic acid analogs for therapeutic applications. Chem Biodivers 7:536–542. doi:10.1002/cbdv.200900343

    Article  CAS  PubMed  Google Scholar 

  34. Verkman AS (2012) Aquaporins in clinical medicine. Annu Rev Med 63:303–316. doi:10.1146/annurev-med-043010-193843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Verkman AS, Anderson MO, Papadopoulos MC (2014) Aquaporins: important but elusive drug targets. Nat Rev Drug Discov 13:259–277. doi:10.1038/nrd4226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Voelkel NF, Gomez-Arroyo J (2014) The role of vascular endothelial growth factor in pulmonary arterial hypertension. The angiogenesis paradox. Am J Respir Cell Mol Biol 51:474–484. doi:10.1165/rcmb.2014-0045TR

    Article  PubMed  Google Scholar 

  37. Ward JP, McMurtry IF (2009) Mechanisms of hypoxic pulmonary vasoconstriction and their roles in pulmonary hypertension: new findings for an old problem. Curr Opin Pharmacol 9:287–296. doi:10.1016/j.coph.2009.02.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Werner F, Kojonazarov B, Gassner B, Abesser M, Schuh K, Volker K, Baba HA, Dahal BK, Schermuly RT, Kuhn M (2016) Endothelial actions of atrial natriuretic peptide prevent pulmonary hypertension in mice. Basic Res Cardiol 111:22. doi:10.1007/s00395-016-0541-x

    Article  PubMed  PubMed Central  Google Scholar 

  39. Xia H, Ma YF, Yu CH, Li YJ, Tang J, Li JB, Zhao YN, Liu Y (2014) Aquaporin 3 knockdown suppresses tumour growth and angiogenesis in experimental non-small cell lung cancer. Exp Physiol 99:974–984. doi:10.1113/expphysiol.2014.078527

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Rudolf Speich for his continuous support of our research, his commitment, and enthusiasm to pulmonary hypertension and many invaluable inputs. We are deeply saddened by his unexpected death. Furthermore, we would like to thank Giovanni Pellegrini from the Institute of Veterinary Physiology of the University of Zurich for his assistance with the animal samples. This work was supported by the Swiss National Science Foundation (SNF Grant 31003A 144212); the Swiss Lung Association (LLS-Nr 2014-09); the Hartmann Müller Foundation; and the Novartis Foundation for medical–biological research (16B086).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Brock.

Ethics declarations

Ethical standards

All animal experiments were approved by the Cantonal Veterinary Office Zurich (Approval Numbers 151/2012 and 212/2014) and performed in accordance with the guidelines from Directive 2010/63/EU of the European Parliament as well as with the ethical standards laid down in the 1964 Declaration of Helsinki.

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Claudio Schuoler and Thomas J. Haider share first authorship.

Lars C. Huber and Matthias Brock share senior authorship.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 20122 kb)

Supplementary material 2 (PDF 93 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schuoler, C., Haider, T.J., Leuenberger, C. et al. Aquaporin 1 controls the functional phenotype of pulmonary smooth muscle cells in hypoxia-induced pulmonary hypertension. Basic Res Cardiol 112, 30 (2017). https://doi.org/10.1007/s00395-017-0620-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00395-017-0620-7

Keywords

Navigation