Skip to main content
Log in

Activation of mitochondrial STAT-3 and reduced mitochondria damage during hypothermia treatment for post-cardiac arrest myocardial dysfunction

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

While therapeutic hypothermia improves the outcomes of individuals in cardiac arrest, the hemodynamic responses and mechanisms which underlie hypothermia-induced cardioprotection are not fully understood. Therefore, we investigated the mechanism by which induced hypothermia preserves cardiac function and protects against mitochondrial damage following cardiac arrest. Cardiac arrest was induced in adult male Wistar rats by asphyxiation for 8.5 min. Following resuscitation, the animals were randomly assigned to a hypothermia (32 °C) or normothermia (37 °C) group. Monitoring results showed that cardiac output at the fourth hour after resuscitation was significantly better in rats treated with hypothermia when compared to rats treated with normothermia (P < 0.01). Examinations by transmission electron microscopy showed that mitochondria in the left ventricle of rats in the hypothermia group were significantly less swollen compared to such mitochondria in the normothermia group (P < 0.001). Additionally, opening of mitochondrial permeability transition pores occurred less frequently in the hypothermic group. While complex I/III activity in the electron transport reaction was damaged after cardiac arrest and resuscitation, the degree of injury was ameliorated by hypothermia treatment (P < 0.05). The amount of STAT-3 phosphorylated at tyrosine 705 and its expression in mitochondria were significantly higher under hypothermia treatment compared to normothermia treatment. In vitro studies showed that inhibition STAT-3 activation abolished the ability of hypothermia to protect H9C2 cardiomyocytes against injury produced by simulated ischemia and reperfusion. Therapeutic hypothermia treatment can ameliorate cardiac dysfunction and help preserve both mitochondrial integrity and electron transport activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Argaud L, Gateau-Roesch O, Raisky O, Loufouat J, Robert D, Ovize M (2005) Postconditioning inhibits mitochondrial permeability transition. Circulation 111:194–197. doi:10.1161/01.CIR.0000151290.04952.3B

    Article  CAS  PubMed  Google Scholar 

  2. Ayoub IM, Radhakrishnan J, Gazmuri RJ (2008) Targeting mitochondria for resuscitation from cardiac arrest. Crit Care Med 36:S440–S446. doi:10.1097/00003246-199803000-00011

    Article  PubMed Central  PubMed  Google Scholar 

  3. Barclay CJ, Widen C (2010) Efficiency of cross-bridges and mitochondria in mouse cardiac muscle. Adv Exp Med Biol 682:267–278. doi:10.1007/978-1-4419-6366-6_15

    Article  CAS  PubMed  Google Scholar 

  4. Bernard SA, Gray TW, Buist MD, Jones BM, Silvester W, Gutteridge G, Smith K (2002) Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia. N Engl J Med 346:557–563. doi:10.1056/NEJMoa003289

    Article  PubMed  Google Scholar 

  5. Boengler K, Buechert A, Heinen Y, Roeskes C, Hilfiker-Kleiner D, Heusch G, Schulz R (2008) Cardioprotection by ischemic postconditioning is lost in aged and STAT3-deficient mice. Circ Res 102:131–135. doi:10.1161/CIRCRESAHA.107.164699

    Article  CAS  PubMed  Google Scholar 

  6. Boengler K, Hilfiker-Kleiner D, Drexler H, Heusch G, Schulz R (2008) The myocardial JAK/STAT pathway: from protection to failure. Pharmacol Ther 120:172–185. doi:10.1016/j.pharmthera.2008.08.002

    Article  CAS  PubMed  Google Scholar 

  7. Boengler K, Hilfiker-Kleiner D, Heusch G, Schulz R (2010) Inhibition of permeability transition pore opening by mitochondrial STAT3 and its role in myocardial ischemia/reperfusion. Basic Res Cardiol 105:771–785. doi:10.1007/s00395-010-0124-1

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Boengler K, Ungefug E, Heusch G, Schulz R (2013) The STAT3 inhibitor stattic impairs cardiomyocyte mitochondrial function through increased reactive oxygen species formation. Curr Pharm Des 19:6890–6895. doi:10.2174/138161281939131127115940

    Article  CAS  PubMed  Google Scholar 

  9. Chen HW, Chien CT, Yu SL, Lee YT, Chen WJ (2002) Cyclosporine A regulate oxidative stress-induced apoptosis in cardiomyocytes: mechanisms via ROS generation, iNOS and Hsp70. Br J Pharmacol 137:771–781. doi:10.1038/sj.bjp.0704908

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Chen Q, Camara AK, Stowe DF, Hoppel CL, Lesnefsky EJ (2007) Modulation of electron transport protects cardiac mitochondria and decreases myocardial injury during ischemia and reperfusion. Am J Physiol Cell Physiol 292:C137–C147. doi:10.1152/ajpcell.00270.2006

    Article  CAS  PubMed  Google Scholar 

  11. Chowdhury SK, Drahota Z, Floryk D, Calda P, Houstek J (2000) Activities of mitochondrial oxidative phosphorylation enzymes in cultured amniocytes. Clin Chim Acta 298:157–173. doi:10.1016/S0009-8981(00)00300-4

    Article  CAS  PubMed  Google Scholar 

  12. Cour M, Loufouat J, Paillard M, Augeul L, Goudable J, Ovize M, Argaud L (2011) Inhibition of mitochondrial permeability transition to prevent the post-cardiac arrest syndrome: a pre-clinical study. Eur Heart J 32:226–235. doi:10.1093/eurheartj/ehq112

    Article  PubMed  Google Scholar 

  13. Cung TT, Morel O, Cayla G, Rioufol G, Garcia-Dorado D, Angoulvant D, Bonnefoy-Cudraz E, Guerin P, Elbaz M, Delarche N, Coste P, Vanzetto G, Metge M, Aupetit JF, Jouve B, Motreff P, Tron C, Labeque JN, Steg PG, Cottin Y, Range G, Clerc J, Claeys MJ, Coussement P, Prunier F, Moulin F, Roth O, Belle L, Dubois P, Barragan P, Gilard M, Piot C, Colin P, De Poli F, Morice MC, Ider O, Dubois-Rande JL, Unterseeh T, Le Breton H, Beard T, Blanchard D, Grollier G, Malquarti V, Staat P, Sudre A, Elmer E, Hansson MJ, Bergerot C, Boussaha I, Jossan C, Derumeaux G, Mewton N, Ovize M (2015) Cyclosporine before PCI in Patients with Acute Myocardial Infarction. N Engl J Med 373:1021–1031. doi:10.1056/NEJMoa1505489

    Article  PubMed  Google Scholar 

  14. Das A, Salloum FN, Filippone SM, Durrant DE, Rokosh G, Bolli R, Kukreja RC (2015) Inhibition of mammalian target of rapamycin protects against reperfusion injury in diabetic heart through STAT3 signaling. Basic Res Cardiol 110:31. doi:10.1007/s00395-015-0486-5

    Article  PubMed  Google Scholar 

  15. Gnad F, Forner F, Zielinska DF, Birney E, Gunawardena J, Mann M (2010) Evolutionary constraints of phosphorylation in eukaryotes, prokaryotes, and mitochondria. Mol Cell Proteom 9:2642–2653. doi:10.1074/mcp.M110.001594

    Article  CAS  Google Scholar 

  16. Gong P, Hua R, Zhang Y, Zhao H, Tang Z, Mei X, Zhang M, Cui J, Li C (2013) Hypothermia-induced neuroprotection is associated with reduced mitochondrial membrane permeability in a swine model of cardiac arrest. J Cereb Blood Flow Metab 33:928–934. doi:10.1038/jcbfm.2013.33

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Han F, Da T, Riobo NA, Becker LB (2008) Early mitochondrial dysfunction in electron transfer activity and reactive oxygen species generation after cardiac arrest. Crit Care Med 36:S447–S453. doi:10.1097/CCM.0b013e31818a8a51

    Article  PubMed Central  PubMed  Google Scholar 

  18. Hashioka S, Klegeris A, Qing H, McGeer PL (2011) STAT3 inhibitors attenuate interferon-gamma-induced neurotoxicity and inflammatory molecule production by human astrocytes. Neurobiol Dis 41:299–307. doi:10.1016/j.nbd.2010.09.018

    Article  CAS  PubMed  Google Scholar 

  19. Hattori R, Maulik N, Otani H, Zhu L, Cordis G, Engelman RM, Siddiqui MA, Das DK (2001) Role of STAT3 in ischemic preconditioning. J Mol Cell Cardiol 33:1929–1936. doi:10.1006/jmcc.2001.1456

    Article  CAS  PubMed  Google Scholar 

  20. Heusch G, Musiolik J, Gedik N, Skyschally A (2011) Mitochondrial STAT3 activation and cardioprotection by ischemic postconditioning in pigs with regional myocardial ischemia/reperfusion. Circ Res 109:1302–1308. doi:10.1161/CIRCRESAHA.111.255604

    Article  CAS  PubMed  Google Scholar 

  21. Heusch G, Musiolik J, Kottenberg E, Peters J, Jakob H, Thielmann M (2012) STAT5 activation and cardioprotection by remote ischemic preconditioning in humans: short communication. Circ Res 110:111–115. doi:10.1161/CIRCRESAHA.111.259556

    Article  CAS  PubMed  Google Scholar 

  22. Heusch G (2015) Molecular basis of cardioprotection: signal transduction in ischemic pre-, post-, and remote conditioning. Circ Res 116:674–699. doi:10.1161/CIRCRESAHA.116.305348

    Article  CAS  PubMed  Google Scholar 

  23. Hsu CY, Huang CH, Chang WT, Chen HW, Cheng HJ, Tsai MS, Wang TD, Yen ZS, Lee CC, Chen SC, Chen WJ (2009) Cardioprotective effect of therapeutic hypothermia for postresuscitation myocardial dysfunction. Shock 32:210–216. doi:10.1097/SHK.0b013e318196ee99

    Article  PubMed  Google Scholar 

  24. Huang CH, Chen HW, Tsai MS, Hsu CY, Peng RH, Wang TD, Chang WT, Chen WJ (2009) Antiapoptotic cardioprotective effect of hypothermia treatment against oxidative stress injuries. Acad Emerg Med 16:872–880. doi:10.1111/j.1553-2712.2009.00495.x

    Article  PubMed  Google Scholar 

  25. Huang CH, Tsai MS, Hsu CY, Su YJ, Wang TD, Chang WT, Chen WJ (2011) Post-cardiac arrest myocardial dysfunction is improved with cyclosporine treatment at onset of resuscitation but not in the reperfusion phase. Resuscitation 82(Suppl 2):S41–S47. doi:10.1016/S0300-9572(11)70150-2

    Article  PubMed  Google Scholar 

  26. Huang CH, Chiang CY, Pen RH, Tsai MS, Chen HW, Hsu CY, Wang TD, Ma MH, Chen SC, Chen WJ (2015) Hypothermia treatment preserves mitochondrial integrity and viability of cardiomyocytes after ischaemic reperfusion injury. Injury 46:233–339. doi:10.1016/j.injury.2014.10.055

    Article  PubMed  Google Scholar 

  27. Hypothermia after Cardiac Arrest Study G (2002) Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest. N Engl J Med 346:549–556. doi:10.1056/NEJMoa012689

    Article  Google Scholar 

  28. Kamohara T, Weil MH, Tang W, Sun S, Yamaguchi H, Klouche K, Bisera J (2001) A comparison of myocardial function after primary cardiac and primary asphyxial cardiac arrest. Am J Respir Crit Care Med 164:1221–1224. doi:10.1164/ajrccm.164.7.2007083

    Article  CAS  PubMed  Google Scholar 

  29. Kroner A, Seitelberger R, Schirnhofer J, Bernecker O, Mallinger R, Hallstrom S, Ploner M, Podesser BK (2002) Diltiazem during reperfusion preserves high energy phosphates by protection of mitochondrial integrity. Eur J Cardiothorac Surg 21:224–231. doi:10.1016/S1010-7940(01)01110-1

    Article  CAS  PubMed  Google Scholar 

  30. Lecour S, Suleman N, Deuchar GA, Somers S, Lacerda L, Huisamen B, Opie LH (2005) Pharmacological preconditioning with tumor necrosis factor-alpha activates signal transducer and activator of transcription-3 at reperfusion without involving classic prosurvival kinases (Akt and extracellular signal-regulated kinase). Circulation 112:3911–3918. doi:10.1161/CIRCULATIONAHA.105.581058

    Article  CAS  PubMed  Google Scholar 

  31. Lecour S (2009) Activation of the protective survivor activating factor enhancement (SAFE) pathway against reperfusion injury: does it go beyond the RISK pathway? J Mol Cell Cardiol 47:32–40. doi:10.1016/j.yjmcc.2009.03.019

    Article  CAS  PubMed  Google Scholar 

  32. Lecour S, James RW (2011) When are pro-inflammatory cytokines SAFE in heart failure? Eur Heart J 32:680–685. doi:10.1093/eurheartj/ehq484

    Article  CAS  PubMed  Google Scholar 

  33. Liu XH, Aksan A, Menze MA, Hand SC, Toner M (2005) Trehalose loading through the mitochondrial permeability transition pore enhances desiccation tolerance in rat liver mitochondria. Biochim Biophys Acta 1717:21–26. doi:10.1016/j.bbamem.2005.09.012

    Article  CAS  PubMed  Google Scholar 

  34. Ma MC, Wang BW, Yeh TP, Wu JL, Chung TH, Tsui K, Chiang CF, Huang AJ, Huang YT (2015) Interleukin-27, a novel cytokine induced by ischemia-reperfusion injury in rat hearts, mediates cardioprotective effects via the gp130/STAT3 pathway. Basic Res Cardiol 110:22. doi:10.1007/s00395-015-0480-y

    Article  PubMed  Google Scholar 

  35. Mangolini M, de Boer J, Walf-Vorderwulbecke V, Pieters R, den Boer ML, Williams O (2013) STAT3 mediates oncogenic addiction to TEL-AML1 in t(12;21) acute lymphoblastic leukemia. Blood 122:542–549. doi:10.1182/blood-2012-11-465252

    Article  CAS  PubMed  Google Scholar 

  36. McCaul CL, McNamara P, Engelberts D, Slorach C, Hornberger LK, Kavanagh BP (2006) The effect of global hypoxia on myocardial function after successful cardiopulmonary resuscitation in a laboratory model. Resuscitation 68:267–275. doi:10.1016/j.resuscitation.2005.06.018

    Article  PubMed  Google Scholar 

  37. Meybohm P, Gruenewald M, Albrecht M, Zacharowski KD, Lucius R, Zitta K, Koch A, Tran N, Scholz J, Bein B (2009) Hypothermia and postconditioning after cardiopulmonary resuscitation reduce cardiac dysfunction by modulating inflammation, apoptosis and remodeling. PLoS One 4:e7588. doi:10.1371/journal.pone.0007588

    Article  PubMed Central  PubMed  Google Scholar 

  38. Nadkarni VM, Larkin GL, Peberdy MA, Carey SM, Kaye W, Mancini ME, Nichol G, Lane-Truitt T, Potts J, Ornato JP, Berg RA, National Registry of Cardiopulmonary Resuscitation I (2006) First documented rhythm and clinical outcome from in-hospital cardiac arrest among children and adults. JAMA 295:50–57. doi:10.1001/jama.295.1.50

    Article  CAS  PubMed  Google Scholar 

  39. Nielsen N, Wetterslev J, Cronberg T, Erlinge D, Gasche Y, Hassager C, Horn J, Hovdenes J, Kjaergaard J, Kuiper M, Pellis T, Stammet P, Wanscher M, Wise MP, Aneman A, Al-Subaie N, Boesgaard S, Bro-Jeppesen J, Brunetti I, Bugge JF, Hingston CD, Juffermans NP, Koopmans M, Kober L, Langorgen J, Lilja G, Moller JE, Rundgren M, Rylander C, Smid O, Werer C, Winkel P, Friberg H, Investigators TTMT (2013) Targeted temperature management at 33° C versus 36° C after cardiac arrest. N Engl J Med 369:2197–2206. doi:10.1056/NEJMoa1310519

    Article  CAS  PubMed  Google Scholar 

  40. Niemann JT, Stratton SJ, Cruz B, Lewis RJ (2001) Outcome of out-of-hospital postcountershock asystole and pulseless electrical activity versus primary asystole and pulseless electrical activity. Crit Care Med 29:2366–2370. doi:10.1097/00003246-200112000-00020

    Article  CAS  PubMed  Google Scholar 

  41. Ning XH, Chi EY, Buroker NE, Chen SH, Xu CS, Tien YT, Hyyti OM, Ge M, Portman MA (2007) Moderate hypothermia (30° C) maintains myocardial integrity and modifies response of cell survival proteins after reperfusion. Am J Physiol Heart Circ Physiol 293:H2119–H2128. doi:10.1152/ajpheart.00123.2007

    Article  CAS  PubMed  Google Scholar 

  42. Parish DC, Dinesh Chandra KM, Dane FC (2003) Success changes the problem: why ventricular fibrillation is declining, why pulseless electrical activity is emerging, and what to do about it. Resuscitation 58:31–35. doi:10.1016/S0300-9572(03)00104-7

    Article  PubMed  Google Scholar 

  43. Sanada S, Komuro I, Kitakaze M (2011) Pathophysiology of myocardial reperfusion injury: preconditioning, postconditioning, and translational aspects of protective measures. Am J Physiol Heart Circ Physiol 301:H1723–H1741. doi:10.1152/ajpheart.00553.2011

    Article  CAS  PubMed  Google Scholar 

  44. Shao ZH, Sharp WW, Wojcik KR, Li CQ, Han M, Chang WT, Ramachandran S, Li J, Hamann KJ, Vanden Hoek TL (2010) Therapeutic hypothermia cardioprotection via Akt- and nitric oxide-mediated attenuation of mitochondrial oxidants. Am J Physiol Heart Circ Physiol 298:H2164–H2173. doi:10.1152/ajpheart.00994.2009

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Siddiquee K, Zhang S, Guida WC, Blaskovich MA, Greedy B, Lawrence HR, Yip ML, Jove R, McLaughlin MM, Lawrence NJ, Sebti SM, Turkson J (2007) Selective chemical probe inhibitor of Stat3, identified through structure-based virtual screening, induces antitumor activity. Proc Natl Acad Sci 104:7391–7396. doi:10.1073/pnas.0609757104

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Sun S, Tang W, Song F, Yu T, Ristagno G, Shan Y, Weng Y, Weil MH (2010) The effects of epinephrine on outcomes of normothermic and therapeutic hypothermic cardiopulmonary resuscitation. Crit Care Med 38:2175–2180. doi:10.1097/CCM.0b013e3181eedad6

    Article  CAS  PubMed  Google Scholar 

  47. Szczepanek K, Chen Q, Derecka M, Salloum FN, Zhang Q, Szelag M, Cichy J, Kukreja RC, Dulak J, Lesnefsky EJ, Larner AC (2011) Mitochondrial-targeted Signal transducer and activator of transcription 3 (STAT3) protects against ischemia-induced changes in the electron transport chain and the generation of reactive oxygen species. J Biol Chem 286:29610–29620. doi:10.1074/jbc.M111.226209

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Tissier R, Couvreur N, Ghaleh B, Bruneval P, Lidouren F, Morin D, Zini R, Bize A, Chenoune M, Belair MF, Mandet C, Douheret M, Dubois-Rande JL, Parker JC, Cohen MV, Downey JM, Berdeaux A (2009) Rapid cooling preserves the ischaemic myocardium against mitochondrial damage and left ventricular dysfunction. Cardiovasc Res 83:345–353. doi:10.1093/cvr/cvp046

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Tissier R, Chenoune M, Pons S, Zini R, Darbera L, Lidouren F, Ghaleh B, Berdeaux A, Morin D (2013) Mild hypothermia reduces per-ischemic reactive oxygen species production and preserves mitochondrial respiratory complexes. Resuscitation 84:249–255. doi:10.1016/j.resuscitation.2012.06.030

    Article  CAS  PubMed  Google Scholar 

  50. Wegrzyn J, Potla R, Chwae YJ, Sepuri NB, Zhang Q, Koeck T, Derecka M, Szczepanek K, Szelag M, Gornicka A, Moh A, Moghaddas S, Chen Q, Bobbili S, Cichy J, Dulak J, Baker DP, Wolfman A, Stuehr D, Hassan MO, Fu XY, Avadhani N, Drake JI, Fawcett P, Lesnefsky EJ, Larner AC (2009) Function of mitochondrial Stat3 in cellular respiration. Science 323:793–797. doi:10.1126/science.1164551

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Xuan YT, Guo Y, Han H, Zhu Y, Bolli R (2001) An essential role of the JAK-STAT pathway in ischemic preconditioning. Proc Natl Acad Sci 98:9050–9055. doi:10.1073/pnas.161283798

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Yang X, Liu Y, Yang XM, Hu F, Cui L, Swingle MR, Honkanen RE, Soltani P, Tissier R, Cohen MV, Downey JM (2011) Cardioprotection by mild hypothermia during ischemia involves preservation of ERK activity. Basic Res Cardiol 106:421–430. doi:10.1007/s00395-011-0165-0

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Yeh ST, Lee HL, Aune SE, Chen CL, Chen YR, Angelos MG (2009) Preservation of mitochondrial function with cardiopulmonary resuscitation in prolonged cardiac arrest in rats. J Mol Cell Cardiol 47:789–797. doi:10.1016/j.yjmcc.2009.09.003

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Zobel C, Adler C, Kranz A, Seck C, Pfister R, Hellmich M, Kochanek M, Reuter H (2012) Mild therapeutic hypothermia in cardiogenic shock syndrome. Crit Care Med 40:1715–1723. doi:10.1097/CCM.0b013e318246b820

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The study was supported by grants from the National Science Council (101-2628-B-002-004-MY3) and National Taiwan University Hospital (101MSN04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Jone Chen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 506 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, CH., Tsai, MS., Chiang, CY. et al. Activation of mitochondrial STAT-3 and reduced mitochondria damage during hypothermia treatment for post-cardiac arrest myocardial dysfunction. Basic Res Cardiol 110, 59 (2015). https://doi.org/10.1007/s00395-015-0516-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00395-015-0516-3

Keywords

Navigation