Skip to main content
Log in

Transcutaneous electrical nerve stimulation as a novel method of remote preconditioning: in vitro validation in an animal model and first human observations

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Remote ischemic preconditioning (rIPC) induced by transient limb ischemia (li-rIPC) leads to neurally dependent release of blood-borne factors that provide potent cardioprotection. We hypothesized that transcutaneous electrical nerve stimulation (TENS) is a clinically relevant stimulus of rIPC. Study 1: seven rabbits were subjected to lower limb TENS; six to li-rIPC, and six to sham intervention. Blood was drawn and used to prepare a dialysate for subsequent analysis of cardioprotection in rabbit Langendorff preparation. Study 2: 14 healthy adults underwent upper limb TENS stimulation on one study day, 10 of whom also underwent li-rIPC on another study day. Blood was drawn before and after each stimulus, dialysate prepared, and cardioprotective activity assessed in mouse Langendorff preparation. The infarct size and myocardial recovery were measured after 30 min of global ischemia and 60 or 120 min of reperfusion. Animal validation: compared to control, TENS induced marked cardioprotection with significantly reduced infarct size (TENS vs. sham p < 0.01, rIPC vs. sham p < 0.01, TENS vs. rIPC p = ns) and improved functional recovery during reperfusion. Human study: compared to baseline, dialysate after rIPC (pre-rIPC vs. post-rIPC, p < 0.001) and TENS provided potent cardioprotection (pre-TENS vs. post-TENS p < 0.001) and improved myocardial recovery during reperfusion. The cardioprotective effects of TENS dialysates were blocked by pretreatment of the receptor heart with the opioid antagonist naloxone. TENS is a novel method for inducing cardioprotection and may provide an alternative to the limb ischemia stimulus for induction of rIPC clinically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Birnbaum Y, Hale SL, Kloner RA (1997) Ischemic preconditioning at a distance: reduction of myocardial infarct size by partial reduction of blood supply combined with rapid stimulation of the gastrocnemius muscle in the rabbit. Circulation 96:1641–1646. doi:10.1161/01.CIR.96.5.1641

    Article  CAS  PubMed  Google Scholar 

  2. Boengler K, Buechert A, Heinen Y, Roeskes C, Hilfiker-Kleiner D, Heusch G, Schulz R (2008) Cardioprotection by ischemic postconditioning is lost in aged and STAT3-deficient mice. Circ Res 102:131–135. doi:10.1161/CIRCRESAHA.107.164699

    Article  CAS  PubMed  Google Scholar 

  3. Botker HE, Kharbanda R, Schmidt MR, Bottcher M, Kaltoft AK, Terkelsen CJ, Munk K, Andersen NH, Hansen TM, Trautner S, Lassen JF, Christiansen EH, Krusell LR, Kristensen SD, Thuesen L, Nielsen SS, Rehling M, Sorensen HT, Redington AN, Nielsen TT (2010) Remote ischaemic conditioning before hospital admission, as a complement to angioplasty, and effect on myocardial salvage in patients with acute myocardial infarction: a randomised trial. Lancet 375:727–734. doi:10.1016/S0140-6736(09)62001-8

    Article  PubMed  Google Scholar 

  4. Celander O, Folkow B (1953) The nature and the distribution of afferent fibres provided with the axon reflex arrangement. Acta Physiol Scand 29:359–370. doi:10.1111/j.1748-1716.1953.tb01031.x

    Article  CAS  PubMed  Google Scholar 

  5. Cheung MM, Kharbanda RK, Konstantinov IE, Shimizu M, Frndova H, Li J, Holtby HM, Cox PN, Smallhorn JF, Van Arsdell GS, Redington AN (2006) Randomized controlled trial of the effects of remote ischemic preconditioning on children undergoing cardiac surgery: first clinical application in humans. J Am Coll Cardiol 47:2277–2282. doi:10.1016/j.jacc.2006.01.066

    Article  PubMed  Google Scholar 

  6. Conti A, Scala S, D’Agostino P, Alimenti E, Morelli D, Andria B, Tammaro A, Attanasio C, Della Ragione F, Scuderi V, Fabbrini F, D’Esposito M, Di Florio E, Nitsch L, Calise F, Faiella A (2007) Wide gene expression profiling of ischemia–reperfusion injury in human liver transplantation. Liver Transplant 13:99–113. doi:10.1002/lt.20960

    Article  Google Scholar 

  7. Dickson EW, Blehar DJ, Carraway RE, Heard SO, Steinberg G, Przyklenk K (2001) Naloxone blocks transferred preconditioning in isolated rabbit hearts. J Mol Cell Cardiol 33:1751–1756. doi:10.1006/jmcc.2001.1436

    Article  CAS  PubMed  Google Scholar 

  8. Dickson EW, Lorbar M, Porcaro WA, Fenton RA, Reinhardt CP, Gysembergh A, Przyklenk K (1999) Rabbit heart can be “preconditioned” via transfer of coronary effluent. Am J Physiol 277:H2451–H2457

    CAS  PubMed  Google Scholar 

  9. Ding YF, Zhang MM, He RR (2001) Role of renal nerve in cardioprotection provided by renal ischemic preconditioning in anesthetized rabbits. Sheng Li Xue Bao 53:7–12

    CAS  PubMed  Google Scholar 

  10. Dong JH, Liu YX, Ji ES, He RR (2004) Limb ischemic preconditioning reduces infarct size following myocardial ischemia–reperfusion in rats. Sheng Li Xue Bao 56:41–46

    PubMed  Google Scholar 

  11. Dong JH, Liu YX, Zhao J, Ma HJ, Guo SM, He RR (2004) High-frequency electrical stimulation of femoral nerve reduces infarct size following myocardial ischemia–reperfusion in rats. Sheng Li Xue Bao 56:620–624

    PubMed  Google Scholar 

  12. Evans MS, Reid KH, Sharp JB Jr (1993) Dimethylsulfoxide (DMSO) blocks conduction in peripheral nerve C fibers: a possible mechanism of analgesia. Neurosci Lett 150:145–148. doi:10.1016/0304-3940(93)90522-m

    Article  CAS  PubMed  Google Scholar 

  13. Gho BC, Schoemaker RG, van den Doel MA, Duncker DJ, Verdouw PD (1996) Myocardial protection by brief ischemia in noncardiac tissue. Circulation 94:2193–2200. doi:10.1161/01.CIR.94.9.2193

    Article  CAS  PubMed  Google Scholar 

  14. Han JS, Chen XH, Sun SL, Xu XJ, Yuan Y, Yan SC, Hao JX, Terenius L (1991) Effect of low- and high-frequency TENS on Met-enkephalin-Arg-Phe and dynorphin A immunoreactivity in human lumbar CSF. Pain 47:295–298

    Article  CAS  PubMed  Google Scholar 

  15. Heusch G, Musiolik J, Kottenberg E, Peters J, Jakob H, Thielmann M (2012) STAT5 activation and cardioprotection by remote ischemic preconditioning in humans: short communication. Circ Res 110:111–115. doi:10.1161/CIRCRESAHA.111.259556

    Article  CAS  PubMed  Google Scholar 

  16. Huda R, Chung DH, Mathru M (2005) Ischemic preconditioning at a distance: altered gene expression in mouse heart and other organs following brief occlusion of the mesenteric artery. Heart Lung Circ 14:36–43. doi:10.1016/j.hlc.2004.11.006

    Article  CAS  PubMed  Google Scholar 

  17. Jensen RV, Stottrup NB, Kristiansen SB, Botker HE (2012) Release of a humoral circulating cardioprotective factor by remote ischemic preconditioning is dependent on preserved neural pathways in diabetic patients. Basic Res Cardiol 107:285. doi:10.1007/s00395-012-0285-1

    Article  PubMed  Google Scholar 

  18. Jones WK, Fan GC, Liao S, Zhang JM, Wang Y, Weintraub NL, Kranias EG, Schultz JE, Lorenz J, Ren X (2009) Peripheral nociception associated with surgical incision elicits remote nonischemic cardioprotection via neurogenic activation of protein kinase C signaling. Circulation 120:S1–S9. doi:10.1161/CIRCULATIONAHA.108.843938

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Kharbanda RK, Mortensen UM, White PA, Kristiansen SB, Schmidt MR, Hoschtitzky JA, Vogel M, Sorensen K, Redington AN, MacAllister R (2002) Transient limb ischemia induces remote ischemic preconditioning in vivo. Circulation 106:2881–2883. doi:10.1161/01.CIR.0000043806.51912.9B

    Article  CAS  PubMed  Google Scholar 

  20. Kharbanda RK, Nielsen TT, Redington AN (2009) Translation of remote ischaemic preconditioning into clinical practice. Lancet 374:1557–1565. doi:10.1016/S0140-6736(09)61421-5

    Article  PubMed  Google Scholar 

  21. Konstantinov IE, Arab S, Kharbanda RK, Li J, Cheung MM, Cherepanov V, Downey GP, Liu PP, Cukerman E, Coles JG, Redington AN (2004) The remote ischemic preconditioning stimulus modifies inflammatory gene expression in humans. Physiol Genomics 19:143–150. doi:10.1152/physiolgenomics.0 0046.2004

    Article  CAS  PubMed  Google Scholar 

  22. Konstantinov IE, Li J, Cheung MM, Shimizu M, Stokoe J, Kharbanda RK, Redington AN (2005) Remote ischemic preconditioning of the recipient reduces myocardial ischemia–reperfusion injury of the denervated donor heart via a Katp channel-dependent mechanism. Transplantation 79:1691–1695

    Article  PubMed  Google Scholar 

  23. Kottenberg E, Musiolik J, Thielmann M, Jakob H, Peters J, Heusch G (2014) Interference of propofol with signal transducer and activator of transcription 5 activation and cardioprotection by remote ischemic preconditioning during coronary artery bypass grafting. J Thorac Cardiovasc Surg 147(1):376–382. doi: 10.1016/j.jtcvs.2013.01.005

    Article  CAS  PubMed  Google Scholar 

  24. Kottenberg E, Thielmann M, Bergmann L, Heine T, Jakob H, Heusch G, Peters J (2012) Protection by remote ischemic preconditioning during coronary artery bypass graft surgery with isoflurane but not propofol—a clinical trial. Acta Anaesthesiol Scand 56:30–38. doi:10.1111/j.1399-6576.2011.02585.x

    Article  CAS  PubMed  Google Scholar 

  25. Liem DA, Verdouw PD, Ploeg H, Kazim S, Duncker DJ (2002) Sites of action of adenosine in interorgan preconditioning of the heart. Am J Physiol Heart Circ Physiol 283:H29–H37. doi:10.1152/ajpheart.0 1031.2001

    CAS  PubMed  Google Scholar 

  26. Linden MD, Whittaker P, Frelinger AL 3rd, Barnard MR, Michelson AD, Przyklenk K (2006) Preconditioning ischemia attenuates molecular indices of platelet activation-aggregation. J Thromb Haemost 4:2670–2677. doi:10.1111/j.1538-7836.2006.02228.x

    Article  CAS  PubMed  Google Scholar 

  27. Loukogeorgakis SP, Panagiotidou AT, Broadhead MW, Donald A, Deanfield JE, MacAllister RJ (2005) Remote ischemic preconditioning provides early and late protection against endothelial ischemia–reperfusion injury in humans: role of the autonomic nervous system. J Am Coll Cardiol 46:450–456. doi:10.1016/j.jacc.2005.04.044

    Article  CAS  PubMed  Google Scholar 

  28. Lu Y, Zhou J, Xu C, Lin H, Xiao J, Wang Z, Yang B (2008) JAK/STAT and PI3 K/AKT pathways form a mutual transactivation loop and afford resistance to oxidative stress-induced apoptosis in cardiomyocytes. Cell Physiol Biochem 21:305–314. doi:10.1159/000129389

    Article  CAS  PubMed  Google Scholar 

  29. Michelsen MM, Stottrup NB, Schmidt MR, Lofgren B, Jensen RV, Tropak M, St-Michel EJ, Redington AN, Botker HE (2012) Exercise-induced cardioprotection is mediated by a bloodborne, transferable factor. Basic Res Cardiol 107:260. doi:10.1007/s00395-012-0260-x

    Article  CAS  PubMed  Google Scholar 

  30. Murry CE, Jennings RB, Reimer KA (1986) Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 74:1124–1136. doi:10.1161/01.CIR.74.5.1124

    Article  CAS  PubMed  Google Scholar 

  31. Peart JN, Gross GJ (2006) Cardioprotective effects of acute and chronic opioid treatment are mediated via different signaling pathways. Am J Physiol Heart Circ Physiol 291:H1746–H1753. doi:10.1152/ajpheart.0 0233.2006

    Article  CAS  PubMed  Google Scholar 

  32. Pell TJ, Baxter GF, Yellon DM, Drew GM (1998) Renal ischemia preconditions myocardium: role of adenosine receptors and ATP-sensitive potassium channels. Am J Physiol 275:H1542–H1547

    CAS  PubMed  Google Scholar 

  33. Przyklenk K, Bauer B, Ovize M, Kloner RA, Whittaker P (1993) Regional ischemic ‘preconditioning’ protects remote virgin myocardium from subsequent sustained coronary occlusion. Circulation 87:893–899. doi:10.1161/01.CIR.87.3.893

    Article  CAS  PubMed  Google Scholar 

  34. Raza A, Dikdan G, Desai KK, Shareef A, Fernandes H, Aris V, de la Torre AN, Wilson D, Fisher A, Soteropoulos P, Koneru B (2010) Global gene expression profiles of ischemic preconditioning in deceased donor liver transplantation. Liver Transplant 16:588–599. doi:10.1002/lt.22049

    Google Scholar 

  35. Redington KL, Disenhouse T, Strantzas SC, Gladstone R, Wei C, Tropak MB, Dai X, Manlhiot C, Li J, Redington AN (2012) Remote cardioprotection by direct peripheral nerve stimulation and topical capsaicin is mediated by circulating humoral factors. Basic Res Cardiol 107:241. doi:10.1007/s00395-011-0241-5

    Article  PubMed  Google Scholar 

  36. Saade NE, Massaad CA, Ochoa-Chaar CI, Jabbur SJ, Safieh-Garabedian B, Atweh SF (2002) Upregulation of proinflammatory cytokines and nerve growth factor by intraplantar injection of capsaicin in rats. J Physiol 545:241–253. doi:10.1113/jphysiol.2002.028233

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Saxena P, Shaw OM, Misso NL, Naran A, Shehatha J, Newman MA, d’Udekem Y, Thompson PJ, Konstantinov IE (2011) Remote ischemic preconditioning stimulus decreases the expression of kinin receptors in human neutrophils. J Surg Res 171:311–316. doi:10.1016/j.jss.2009.11.011

    Article  CAS  PubMed  Google Scholar 

  38. Schoemaker RG, van Heijningen CL (2000) Bradykinin mediates cardiac preconditioning at a distance. Am J Physiol Heart Circ Physiol 278:H1571–H1576

    CAS  PubMed  Google Scholar 

  39. Serejo FC, Rodrigues LF Jr, da Silva Tavares KC, de Carvalho AC, Nascimento JH (2007) Cardioprotective properties of humoral factors released from rat hearts subject to ischemic preconditioning. J Cardiovasc Pharmacol 49:214–220. doi:10.1097/FJC.0b013e3180325ad9

    Article  CAS  PubMed  Google Scholar 

  40. Sergeev P, da Silva R, Lucchinetti E, Zaugg K, Pasch T, Schaub MC, Zaugg M (2004) Trigger-dependent gene expression profiles in cardiac preconditioning: evidence for distinct genetic programs in ischemic and anesthetic preconditioning. Anesthesiology 100:474–488

    Article  PubMed  Google Scholar 

  41. Shimizu M, Saxena P, Konstantinov IE, Cherepanov V, Cheung MM, Wearden P, Zhangdong H, Schmidt M, Downey GP, Redington AN (2010) Remote ischemic preconditioning decreases adhesion and selectively modifies functional responses of human neutrophils. J Surg Res 158:155–161. doi:10.1016/j.jss.2008.08.010

    Article  CAS  PubMed  Google Scholar 

  42. Shimizu M, Tropak M, Diaz RJ, Suto F, Surendra H, Kuzmin E, Li J, Gross G, Wilson GJ, Callahan J, Redington AN (2009) Transient limb ischaemia remotely preconditions through a humoral mechanism acting directly on the myocardium: evidence suggesting cross-species protection. Clin Sci (Lond) 117:191–200. doi:10.1042/CS20080523

    Article  CAS  Google Scholar 

  43. Sjolund BH (1988) Peripheral nerve stimulation suppression of C-fiber-evoked flexion reflex in rats. Part 2: parameters of low-rate train stimulation of skin and muscle afferent nerves. J Neurosurg 68:279–283

    Article  CAS  PubMed  Google Scholar 

  44. Soond SM, Townsend PA, Barry SP, Knight RA, Latchman DS, Stephanou A (2008) ERK and the F-box protein betaTRCP target STAT1 for degradation. J Biol Chem 283:16077–16083. doi:10.1074/jbc.M800384200

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Steensrud T, Li J, Dai X, Manlhiot C, Kharbanda RK, Tropak M, Redington A (2010) Pretreatment with the nitric oxide donor SNAP or nerve transection blocks humoral preconditioning by remote limb ischemia or intra-arterial adenosine. Am J Physiol Heart Circ Physiol 299:H1598–H1603. doi:10.1152/ajpheart.0 0396.2010

    Article  CAS  PubMed  Google Scholar 

  46. Steinbeck JA, Methner A (2005) Translational downregulation of the noncatalytic growth factor receptor TrkB.T1 by ischemic preconditioning of primary neurons. Gene Expr 12:99–106

    Article  PubMed  Google Scholar 

  47. Stenzel-Poore MP, Stevens SL, Xiong Z, Lessov NS, Harrington CA, Mori M, Meller R, Rosenzweig HL, Tobar E, Shaw TE, Chu X, Simon RP (2003) Effect of ischaemic preconditioning on genomic response to cerebral ischaemia: similarity to neuroprotective strategies in hibernation and hypoxia-tolerant states. Lancet 362:1028–1037. doi:10.1016/S0140-6736(03)14412-1

    Article  CAS  PubMed  Google Scholar 

  48. Stephanou A, Scarabelli TM, Brar BK, Nakanishi Y, Matsumura M, Knight RA, Latchman DS (2001) Induction of apoptosis and Fas receptor/Fas ligand expression by ischemia/reperfusion in cardiac myocytes requires serine 727 of the STAT-1 transcription factor but not tyrosine 701. J Biol Chem 276:28340–28347. doi:10.1074/jbc.M101177200

    Article  CAS  PubMed  Google Scholar 

  49. Takaoka A, Nakae I, Mitsunami K, Yabe T, Morikawa S, Inubushi T, Kinoshita M (1999) Renal ischemia/reperfusion remotely improves myocardial energy metabolism during myocardial ischemia via adenosine receptors in rabbits: effects of “remote preconditioning”. J Am Coll Cardiol 33:556–564. doi:10.1016/S0735-1097(98)00559-2

    Article  CAS  PubMed  Google Scholar 

  50. Thielmann M, Kottenberg E, Boengler K, Raffelsieper C, Neuhaeuser M, Peters J, Jakob H, Heusch G (2010) Remote ischemic preconditioning reduces myocardial injury after coronary artery bypass surgery with crystalloid cardioplegic arrest. Basic Res Cardiol 105:657–664. doi:10.1007/s00395-010-0104-5

    Article  CAS  PubMed  Google Scholar 

  51. Weinbrenner C, Nelles M, Herzog N, Sarvary L, Strasser RH (2002) Remote preconditioning by infrarenal occlusion of the aorta protects the heart from infarction: a newly identified non-neuronal but PKC-dependent pathway. Cardiovasc Res 55:590–601. doi:10.1016/S0008-6363(02)00446-7

    Article  CAS  PubMed  Google Scholar 

  52. Wolfrum S, Schneider K, Heidbreder M, Nienstedt J, Dominiak P, Dendorfer A (2002) Remote preconditioning protects the heart by activating myocardial PKCepsilon-isoform. Cardiovasc Res 55:583–589. doi:10.1016/S0008-6363(02)00408-X

    Article  CAS  PubMed  Google Scholar 

  53. Xuan YT, Tang XL, Banerjee S, Takano H, Li RC, Han H, Qiu Y, Li JJ, Bolli R (1999) Nuclear factor-kappaB plays an essential role in the late phase of ischemic preconditioning in conscious rabbits. Circ Res 84:1095–1109. doi:10.1161/01.RES.84.9.1095

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the Leducq Foundation and Canadian Institutes of Health Research.

Conflicts of interest

ANR has submitted a patent application regarding the use of TENS as a preconditioning stimulus.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew N. Redington.

Additional information

K. L. Redington is joint first author.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Merlocco, A.C., Redington, K.L., Disenhouse, T. et al. Transcutaneous electrical nerve stimulation as a novel method of remote preconditioning: in vitro validation in an animal model and first human observations. Basic Res Cardiol 109, 406 (2014). https://doi.org/10.1007/s00395-014-0406-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00395-014-0406-0

Keywords

Navigation