Skip to main content

Advertisement

Log in

Cardiac aquaporins

  • Review
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Aquaporins are a group of proteins with high-selective permeability for water. A subgroup called aquaglyceroporins is also permeable to glycerol, urea and a few other solutes. Aquaporin function has mainly been studied in the brain, kidney, glands and skeletal muscle, while the information about aquaporins in the heart is still scarce. The current review explores the recent advances in this field, bringing aquaporins into focus in the context of myocardial ischemia, reperfusion, and blood osmolarity disturbances. Since the amount of data on aquaporins in the heart is still limited, examples and comparisons from better-studied areas of aquaporin biology have been used. The human heart expresses aquaporin-1, -3, -4 and -7 at the protein level. The potential roles of aquaporins in the heart are discussed, and some general phenomena that the myocardial aquaporins share with aquaporins in other organs are elaborated. Cardiac aquaporin-1 is mostly distributed in the microvasculature. Its main role is transcellular water flux across the endothelial membranes. Aquaporin-4 is expressed in myocytes, both in cardiac and in skeletal muscle. In addition to water flux, its function is connected to the calcium signaling machinery. It may play a role in ischemia–reperfusion injury. Aquaglyceroporins, especially aquaporin-7, may serve as a novel pathway for nutrient delivery into the heart. They also mediate toxicity of various poisons. Aquaporins cannot influence permeability by gating, therefore, their function is regulated by changes of expression—on the levels of transcription, translation (by microRNAs), post-translational modification, membrane trafficking, ubiquitination and subsequent degradation. Studies using mice genetically deficient for aquaporins have shown rather modest changes in the heart. However, they might still prove to be attractive targets for therapy directed to reduce myocardial edema and injury caused by ischemia and reperfusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Adler SM, Verbalis JG (2006) Disorders of body water homeostasis in critical illness. Endocrinol Metab Clin North Am 35:873–894. doi:10.1016/j.ecl.2006.09.011

    PubMed  Google Scholar 

  2. Agre P (2004) Nobel Lecture. Aquaporin water channels. Biosci Rep 24:127–163. doi:10.1007/s10540-005-2577-2

    PubMed  CAS  Google Scholar 

  3. Aliev MK, Khatkevich AN, Tsyplenkova VG, Meertsuk FE, Kapelko VI (2001) Tracer kinetics analysis of the extracellular spaces in saline perfused hearts. Exp Clin Cardiol 6:188–194

    PubMed  CAS  Google Scholar 

  4. Amiry-Moghaddam M, Frydenlund DS, Ottersen OP (2004) Anchoring of aquaporin-4 in brain: molecular mechanisms and implications for the physiology and pathophysiology of water transport. Neuroscience 129:999–1010. doi:10.1016/j.neuroscience.2004.08.049

    PubMed  CAS  Google Scholar 

  5. Amiry-Moghaddam M, Otsuka T, Hurn PD, Traystman RJ, Haug FM, Froehner SC, Adams ME, Neely JD, Agre P, Ottersen OP, Bhardwaj A (2003) An alpha-syntrophin-dependent pool of AQP4 in astroglial end-feet confers bidirectional water flow between blood and brain. Proc Natl Acad Sci USA 100:2106–2111. doi:10.1073/pnas.0437946100

    PubMed  CAS  Google Scholar 

  6. Aon MA, Cortassa S, Akar FG, O’Rourke B (2006) Mitochondrial criticality: a new concept at the turning point of life or death. Biochim Biophys Acta 1762:232–240. doi:10.1016/j.bbadis.2005.06.008

    PubMed  CAS  Google Scholar 

  7. Argaud L, Gateau-Roesch O, Augeul L, Couture-Lepetit E, Loufouat J, Gomez L, Robert D, Ovize M (2008) Increased mitochondrial calcium coexists with decreased reperfusion injury in postconditioned (but not preconditioned) hearts. Am J Physiol Heart Circ Physiol 294:H386–H391. doi:10.1152/ajpheart.01035.2007

    PubMed  CAS  Google Scholar 

  8. Arima H, Yamamoto N, Sobue K, Umenishi F, Tada T, Katsuya H, Asai K (2003) Hyperosmolar mannitol simulates expression of aquaporins 4 and 9 through a p38 mitogen-activated protein kinase-dependent pathway in rat astrocytes. J Biol Chem 278:44525–44534. doi:10.1074/jbc.M304368200

    PubMed  CAS  Google Scholar 

  9. Askenasy N (2001) Is cytotoxic cellular edema real? The effect of calcium ion on water homeostasis in the rat heart. Cardiovasc Toxicol 1:21–34. doi:10.1385/CT:1:1:21

    PubMed  CAS  Google Scholar 

  10. Askenasy N, Navon G (1997) Continuous monitoring of intracellular volumes in isolated rat hearts during normothermic perfusion and ischemia. J Magn Reson 124:42–50. doi:10.1006/jmre.1996.1026

    PubMed  CAS  Google Scholar 

  11. Au CG, Cooper ST, Lo HP, Compton AG, Yang N, Wintour EM, North KN, Winlaw DS (2004) Expression of aquaporin 1 in human cardiac and skeletal muscle. J Mol Cell Cardiol 36:655–662. doi:10.1016/j.yjmcc.2004.01.009

    PubMed  CAS  Google Scholar 

  12. Baek D, Villen J, Shin C, Camargo FD, Gygi SP, Bartel DP (2008) The impact of microRNAs on protein output. Nature 455:64–71. doi:10.1038/nature07242

    PubMed  CAS  Google Scholar 

  13. Bai C, Fukuda N, Song Y, Ma T, Matthay MA, Verkman AS (1999) Lung fluid transport in aquaporin-1 and aquaporin-4 knockout mice. J Clin Invest 103:555–561. doi:10.1172/JCI4138

    PubMed  CAS  Google Scholar 

  14. Barnett ME, Madgwick DK, Takemoto DJ (2007) Protein kinase C as a stress sensor. Cell Signal 19:1820–1829. doi:10.1016/j.cellsig.2007.05.014

    PubMed  CAS  Google Scholar 

  15. Basco D, Nicchia GP, D’Alessandro A, Zolla L, Svelto M, Frigeri A (2011) Absence of aquaporin-4 in skeletal muscle alters proteins involved in bioenergetic pathways and calcium handling. PLoS ONE 6:e19225. doi:10.1371/journal.pone.0019225

    PubMed  CAS  Google Scholar 

  16. Becker BF, Chappell D, Jacob M (2010) Endothelial glycocalyx and coronary vascular permeability: the fringe benefit. Basic Res Cardiol 105:687–701. doi:10.1007/s00395-010-0118-z

    PubMed  CAS  Google Scholar 

  17. Benfenati V, Caprini M, Dovizio M, Mylonakou MN, Ferroni S, Ottersen OP, Amiry-Moghaddam M (2011) An aquaporin-4/transient receptor potential vanilloid 4 (AQP4/TRPV4) complex is essential for cell-volume control in astrocytes. Proc Natl Acad Sci USA 108:2563–2568. doi:10.1073/pnas.1012867108

    PubMed  CAS  Google Scholar 

  18. Benga G (2006) Water channel proteins: from their discovery in Cluj-Napoca, Romania in 1985, to the 2003 Nobel Prize in chemistry and their implications in molecular medicine. Keio J Med 55:64–69. doi:10.2302/kjm.55.64

    PubMed  CAS  Google Scholar 

  19. Benga G, Popescu O, Pop VI, Holmes RP (1986) p-(Chloromercuri)benzenesulfonate binding by membrane proteins and the inhibition of water transport in human erythrocytes. Biochemistry 25:1535–1538. doi:10.1021/bi00355a011

    PubMed  CAS  Google Scholar 

  20. Bondy C, Chin E, Smith BL, Preston GM, Agre P (1993) Developmental gene expression and tissue distribution of the CHIP28 water-channel protein. Proc Natl Acad Sci USA 90:4500–4504. doi:10.1073/pnas.90.10.4500

    PubMed  CAS  Google Scholar 

  21. Boron WF (2010) The Sharpey-Schafer Lecture: gas channels. Exp Physiol 95:1107–1130. doi:10.1113/expphysiol.2010.055244

    PubMed  CAS  Google Scholar 

  22. Butler TL, Au CG, Yang B, Egan JR, Tan YM, Hardeman EC, North KN, Verkman AS, Winlaw DS (2006) Cardiac aquaporin expression in humans, rats, and mice. Am J Physiol Heart Circ Physiol 291:H705–H713. doi:10.1152/ajpheart.00090.2006

    PubMed  CAS  Google Scholar 

  23. Calamita G, Moreno M, Ferri D, Silvestri E, Roberti P, Schiavo L, Gena P, Svelto M, Goglia F (2007) Triiodothyronine modulates the expression of aquaporin-8 in rat liver mitochondria. J Endocrinol 192:111–120. doi:10.1677/JOE-06-0058

    PubMed  CAS  Google Scholar 

  24. Carbrey JM, Song L, Zhou Y, Yoshinaga M, Rojek A, Wang Y, Liu Y, Lujan HL, DiCarlo SE, Nielsen S, Rosen BP, Agre P, Mukhopadhyay R (2009) Reduced arsenic clearance and increased toxicity in aquaglyceroporin-9-null mice. Proc Natl Acad Sci USA 106:15956–15960. doi:10.1073/pnas.0908108106

    PubMed  CAS  Google Scholar 

  25. Carmosino M, Procino G, Tamma G, Mannucci R, Svelto M, Valenti G (2007) Trafficking and phosphorylation dynamics of AQP4 in histamine-treated human gastric cells. Biol Cell 99:25–36. doi:10.1042/BC20060068

    PubMed  CAS  Google Scholar 

  26. Chappell D, Hofmann-Kiefer K, Jacob M, Rehm M, Briegel J, Welsch U, Conzen P, Becker BF (2009) TNF-alpha induced shedding of the endothelial glycocalyx is prevented by hydrocortisone and antithrombin. Basic Res Cardiol 104:78–89. doi:10.1007/s00395-008-0749-5

    PubMed  CAS  Google Scholar 

  27. Chen CH, Xue R, Zhang J, Li X, Mori S, Bhardwaj A (2007) Effect of osmotherapy with hypertonic saline on regional cerebral edema following experimental stroke: a study utilizing magnetic resonance imaging. Neurocrit Care 7:92–100. doi:10.1007/s12028-007-0033-9

    PubMed  CAS  Google Scholar 

  28. Cheng YS, Tang YQ, Dai DZ, Dai Y (2012) AQP4 knockout mice manifest abnormal expressions of calcium handling proteins possibly due to exacerbating pro-inflammatory factors in the heart. Biochem Pharmacol 83:97–105. doi:10.1016/j.bcp.2011.10.006

    PubMed  CAS  Google Scholar 

  29. Crompton M, Costi A (1988) Kinetic evidence for a heart mitochondrial pore activated by Ca2+, inorganic phosphate and oxidative stress. A potential mechanism for mitochondrial dysfunction during cellular Ca2+ overload. Eur J Biochem 178:489–501. doi:10.1111/j.1432-1033.1988.tb14475.x

    PubMed  CAS  Google Scholar 

  30. Denker BM, Smith BL, Kuhajda FP, Agre P (1988) Identification, purification, and partial characterization of a novel Mr 28,000 integral membrane protein from erythrocytes and renal tubules. J Biol Chem 263:15634–15642

    PubMed  CAS  Google Scholar 

  31. Ding JY, Kreipke CW, Speirs SL, Schafer P, Schafer S, Rafols JA (2009) Hypoxia-inducible factor-1alpha signaling in aquaporin upregulation after traumatic brain injury. Neurosci Lett 453:68–72. doi:10.1016/j.neulet.2009.01.077

    PubMed  CAS  Google Scholar 

  32. Dolman D, Drndarski S, Abbott NJ, Rattray M (2005) Induction of aquaporin 1 but not aquaporin 4 messenger RNA in rat primary brain microvessel endothelial cells in culture. J Neurochem 93:825–833. doi:10.1111/j.1471-4159.2005.03111.x

    PubMed  CAS  Google Scholar 

  33. Draelos Z (2012) Aquaporins: an introduction to a key factor in the mechanism of skin hydration. J Clin Aesthet Dermatol 5:53–56

    PubMed  Google Scholar 

  34. Egan JR, Butler TL, Au CG, Tan YM, North KN, Winlaw DS (2006) Myocardial water handling and the role of aquaporins. Biochim Biophys Acta 1758:1043–1052. doi:10.1016/j.bbamem.2006.05.021

    PubMed  CAS  Google Scholar 

  35. Egan JR, Butler TL, Cole AD, Aharonyan A, Baines D, Street N, Navaratnam M, Biecker O, Zazulak C, Au CG, Tan YM, North KN, Winlaw DS (2008) Myocardial ischemia is more important than the effects of cardiopulmonary bypass on myocardial water handling and postoperative dysfunction: a pediatric animal model. J Thorac Cardiovasc Surg 136:1265–1273. doi:10.1016/j.jtcvs.2008.04.002

    PubMed  Google Scholar 

  36. Evan-Wong LA, Davidson RJ (1983) Raised Coulter mean corpuscular volume in diabetic ketoacidosis, and its underlying association with marked plasma hyperosmolarity. J Clin Pathol 36:334–336. doi:10.1136/jcp.36.3.334

    PubMed  CAS  Google Scholar 

  37. Falck G, Schjott J, Jynge P (1999) Hyperosmotic pretreatment reduces infarct size in the rat heart. Physiol Res 48:331–340

    PubMed  CAS  Google Scholar 

  38. Farrell DJ, Bower L (2003) Fatal water intoxication. J Clin Pathol 56:803–804. doi:10.1136/jcp.56.10.803-a

    PubMed  CAS  Google Scholar 

  39. Fazzina G, Amorini AM, Marmarou CR, Fukui S, Okuno K, Dunbar JG, Glisson R, Marmarou A, Kleindienst A (2010) The protein kinase C activator phorbol myristate acetate decreases brain edema by aquaporin 4 downregulation after middle cerebral artery occlusion in the rat. J Neurotrauma 27:453–461. doi:10.1089/neu.2008.0782

    PubMed  Google Scholar 

  40. Fernandez-Llama P, Andrews P, Turner R, Saggi S, Dimari J, Kwon TH, Nielsen S, Safirstein R, Knepper MA (1999) Decreased abundance of collecting duct aquaporins in post-ischemic renal failure in rats. J Am Soc Nephrol 10:1658–1668

    PubMed  CAS  Google Scholar 

  41. Fischbarg J (2012) Water channels and their roles in some ocular tissues. Mol Aspects Med 33:638–641. doi:10.1016/j.mam.2012.07.016

    PubMed  CAS  Google Scholar 

  42. Frigeri A, Gropper MA, Turck CW, Verkman AS (1995) Immunolocalization of the mercurial-insensitive water channel and glycerol intrinsic protein in epithelial cell plasma membranes. Proc Natl Acad Sci USA 92:4328–4331. doi:10.1073/pnas.92.10.4328

    PubMed  CAS  Google Scholar 

  43. Frigeri A, Gropper MA, Umenishi F, Kawashima M, Brown D, Verkman AS (1995) Localization of MIWC and GLIP water channel homologs in neuromuscular, epithelial and glandular tissues. J Cell Sci 108:2993–3002

    PubMed  CAS  Google Scholar 

  44. Frigeri A, Nicchia GP, Balena R, Nico B, Svelto M (2004) Aquaporins in skeletal muscle: reassessment of the functional role of aquaporin-4. Faseb J 18:905–907. doi:10.1096/fj.03-0987fje

    PubMed  CAS  Google Scholar 

  45. Frigeri A, Nicchia GP, Desaphy JF, Pierno S, De Luca A, Camerino DC, Svelto M (2001) Muscle loading modulates aquaporin-4 expression in skeletal muscle. Faseb J 15:1282–1284. doi:10.1096/fj.00-0525fje

    PubMed  CAS  Google Scholar 

  46. Frigeri A, Nicchia GP, Verbavatz JM, Valenti G, Svelto M (1998) Expression of aquaporin-4 in fast-twitch fibers of mammalian skeletal muscle. J Clin Invest 102:695–703. doi:10.1172/JCI2545

    PubMed  CAS  Google Scholar 

  47. Fu D, Lu M (2007) The structural basis of water permeation and proton exclusion in aquaporins. Mol Membr Biol 24:366–374. doi:10.1080/09687680701446965

    PubMed  CAS  Google Scholar 

  48. Gabbi C, Kim HJ, Hultenby K, Bouton D, Toresson G, Warner M, Gustafsson JA (2008) Pancreatic exocrine insufficiency in LXRbeta−/− mice is associated with a reduction in aquaporin-1 expression. Proc Natl Acad Sci USA 105:15052–15057. doi:10.1073/pnas.0808097105

    PubMed  CAS  Google Scholar 

  49. Gallazzini M, Karim Z, Bichara M (2006) Regulation of ROMK (Kir 1.1) channel expression in kidney thick ascending limb by hypertonicity: role of TonEBP and MAPK pathways. Nephron Physiol 104:126–135. doi:10.1159/000095855

    PubMed  Google Scholar 

  50. Garcia-Dorado D, Andres-Villarreal M, Ruiz-Meana M, Inserte J, Barba I (2012) Myocardial edema: a translational view. J Mol Cell Cardiol 52:931–939. doi:10.1016/j.yjmcc.2012.01.010

    PubMed  CAS  Google Scholar 

  51. Garcia-Dorado D, Oliveras J, Gili J, Sanz E, Perez-Villa F, Barrabes J, Carreras MJ, Solares J, Soler–Soler J (1993) Analysis of myocardial oedema by magnetic resonance imaging early after coronary artery occlusion with or without reperfusion. Cardiovasc Res 27:1462–1469. doi:10.1093/cvr/27.8.1462

    PubMed  CAS  Google Scholar 

  52. Gladka M, El Azzouzi H, De Windt LJ, da Costa Martins PA (2009) Aquaporin 7: the glycerol aquaeductus in the heart. Cardiovasc Res 83:3–4. doi:10.1093/cvr/cvp147

    PubMed  CAS  Google Scholar 

  53. Halestrap AP, Clarke SJ, Khaliulin I (2007) The role of mitochondria in protection of the heart by preconditioning. Biochim Biophys Acta 1767:1007–1031. doi:10.1016/j.bbabio.2007.05.008

    PubMed  CAS  Google Scholar 

  54. Hamilton KL (2007) Antioxidants and cardioprotection. Med Sci Sports Exerc 39:1544–1553. doi:10.1249/mss.0b013e3180d099e8

    PubMed  CAS  Google Scholar 

  55. Hasegawa H, Zhang R, Dohrman A, Verkman AS (1993) Tissue-specific expression of mRNA encoding rat kidney water channel CHIP28k by in situ hybridization. Am J Physiol Cell Physiol 264:C237–C245

    CAS  Google Scholar 

  56. Hasler U, Jeon US, Kim JA, Mordasini D, Kwon HM, Feraille E, Martin PY (2006) Tonicity-responsive enhancer binding protein is an essential regulator of aquaporin-2 expression in renal collecting duct principal cells. J Am Soc Nephrol 17:1521–1531. doi:10.1681/ASN.2005121317

    PubMed  CAS  Google Scholar 

  57. Hasler U, Vinciguerra M, Vandewalle A, Martin PY, Feraille E (2005) Dual effects of hypertonicity on aquaporin-2 expression in cultured renal collecting duct principal cells. J Am Soc Nephrol 16:1571–1582. doi:10.1681/ASN.2004110930

    PubMed  CAS  Google Scholar 

  58. Heusch G, Kleinbongard P, Skyschally A, Levkau B, Schulz R, Erbel R (2012) The coronary circulation in cardioprotection: more than just one confounder. Cardiovasc Res 94:237–245. doi:10.1093/cvr/cvr271

    PubMed  CAS  Google Scholar 

  59. Hibuse T, Maeda N, Nakatsuji H, Tochino Y, Fujita K, Kihara S, Funahashi T, Shimomura I (2009) The heart requires glycerol as an energy substrate through aquaporin 7, a glycerol facilitator. Cardiovasc Res 83:34–41. doi:10.1093/cvr/cvp095

    PubMed  CAS  Google Scholar 

  60. Hill AE (2008) Fluid transport: a guide for the perplexed. J Membr Biol 223:1–11. doi:10.1007/s00232-007-9085-1

    PubMed  CAS  Google Scholar 

  61. Hill AE, Shachar-Hill B, Shachar-Hill Y (2004) What are aquaporins for? J Membr Biol 197:1–32. doi:10.1007/s00232-003-0639-6

    PubMed  CAS  Google Scholar 

  62. Hirt L, Ternon B, Price M, Mastour N, Brunet JF, Badaut J (2009) Protective role of early aquaporin 4 induction against postischemic edema formation. J Cereb Blood Flow Metab 29:423–433. doi:10.1038/jcbfm.2008.133

    PubMed  CAS  Google Scholar 

  63. Hoffert JD, Leitch V, Agre P, King LS (2000) Hypertonic induction of aquaporin-5 expression through an ERK-dependent pathway. J Biol Chem 275:9070–9077. doi:10.1074/jbc.275.12.9070

    PubMed  CAS  Google Scholar 

  64. Homma N, Amran MS, Nagasawa Y, Hashimoto K (2006) Topics on the Na+/Ca2+ exchanger: involvement of Na+/Ca2+ exchange system in cardiac triggered activity. J Pharmacol Sci 102:17–21. doi:10.1254/jphs.FMJ06002X3

    PubMed  CAS  Google Scholar 

  65. Hoshi A, Yamamoto T, Shimizu K, Sugiura Y, Ugawa Y (2010) Chemical preconditioning-induced reactive astrocytosis contributes to the reduction of post-ischemic edema through aquaporin-4 downregulation. Exp Neurol 227:89–95. doi:10.1016/j.expneurol.2010.09.016

    PubMed  Google Scholar 

  66. Iandiev I, Pannicke T, Biedermann B, Wiedemann P, Reichenbach A, Bringmann A (2006) Ischemia-reperfusion alters the immunolocalization of glial aquaporins in rat retina. Neurosci Lett 408:108–112. doi:10.1016/j.neulet.2006.08.084

    PubMed  CAS  Google Scholar 

  67. Ishibashi K, Kondo S, Hara S, Morishita Y (2011) The evolutionary aspects of aquaporin family. Am J Physiol Regul Integr Comp Physiol 300:R566–R576. doi:10.1152/ajpregu.90464.2008

    PubMed  CAS  Google Scholar 

  68. Ishibashi K, Kuwahara M, Gu Y, Kageyama Y, Tohsaka A, Suzuki F, Marumo F, Sasaki S (1997) Cloning and functional expression of a new water channel abundantly expressed in the testis permeable to water, glycerol, and urea. J Biol Chem 272:20782–20786. doi:10.1074/jbc.272.33.20782

    PubMed  CAS  Google Scholar 

  69. Ishibashi K, Yamauchi K, Kageyama Y, Saito-Ohara F, Ikeuchi T, Marumo F, Sasaki S (1998) Molecular characterization of human aquaporin-7 gene and its chromosomal mapping. Biochim Biophys Acta 1399:62–66. doi:10.1016/S0167-4781(98)00094-3

    PubMed  CAS  Google Scholar 

  70. Jimi T, Wakayama Y, Inoue M, Kojima H, Oniki H, Matsuzaki Y, Shibuya S, Hara H, Takahashi J (2006) Aquaporin 1: examination of its expression and localization in normal human skeletal muscle tissue. Cells Tissues Organs 184:181–187. doi:10.1159/000099625

    PubMed  CAS  Google Scholar 

  71. Jonker S, Davis LE, van der Bilt JD, Hadder B, Hohimer AR, Giraud GD, Thornburg KL (2003) Anaemia stimulates aquaporin 1 expression in the fetal sheep heart. Exp Physiol 88:691–698. doi:10.1113/eph8802626

    PubMed  CAS  Google Scholar 

  72. Juul KV (2012) The evolutionary origin of the vasopressin/V2-type receptor/aquaporin axis and the urine-concentrating mechanism. Endocrine 42:63–68. doi:10.1007/s12020-012-9634-y

    PubMed  CAS  Google Scholar 

  73. Kaneko K, Yagui K, Tanaka A, Yoshihara K, Ishikawa K, Takahashi K, Bujo H, Sakurai K, Saito Y (2008) Aquaporin 1 is required for hypoxia-inducible angiogenesis in human retinal vascular endothelial cells. Microvasc Res 75:297–301. doi:10.1016/j.mvr.2007.12.003

    PubMed  CAS  Google Scholar 

  74. Kim JG, Bae KD, Yun CH, Im HL, Park JW, Nam-Goong IS, Kim YI, Lee BJ (2008) Thyroid transcription factor-1 exhibits osmosensitive transcription in brain-derived cell lines. Biochem Biophys Res Commun 370:468–472. doi:10.1016/j.bbrc.2008.03.125

    PubMed  CAS  Google Scholar 

  75. Kim JG, Son YJ, Yun CH, Kim YI, Nam-Goong IS, Park JH, Park SK, Ojeda SR, D’Elia AV, Damante G, Lee BJ (2007) Thyroid transcription factor-1 facilitates cerebrospinal fluid formation by regulating aquaporin-1 synthesis in the brain. J Biol Chem 282:14923–14931. doi:10.1074/jbc.M701411200

    PubMed  CAS  Google Scholar 

  76. King LS, Kozono D, Agre P (2004) From structure to disease: the evolving tale of aquaporin biology. Nat Rev Mol Cell Biol 5:687–698. doi:10.1038/nrm1469

    PubMed  CAS  Google Scholar 

  77. Kozeny GA, Murdock DK, Euler DE, Hano JE, Scanlon PJ, Bansal VK, Vertuno LL (1985) In vivo effects of acute changes in osmolality and sodium concentration on myocardial contractility. Am Heart J 109:290–296. doi:10.1016/0002-8703(85)90596-4

    PubMed  CAS  Google Scholar 

  78. Kuchel PW (2006) The story of the discovery of aquaporins: convergent evolution of ideas—but who got there first? Cell Mol Biol (Noisy-le-grand) 52:2–5

    CAS  Google Scholar 

  79. Kuriyama H, Kawamoto S, Ishida N, Ohno I, Mita S, Matsuzawa Y, Matsubara K, Okubo K (1997) Molecular cloning and expression of a novel human aquaporin from adipose tissue with glycerol permeability. Biochem Biophys Res Commun 241:53–58. doi:10.1006/bbrc.1997.7769

    PubMed  CAS  Google Scholar 

  80. Kwon TH, Frokiaer J, Fernandez-Llama P, Knepper MA, Nielsen S (1999) Reduced abundance of aquaporins in rats with bilateral ischemia-induced acute renal failure: prevention by alpha-MSH. Am J Physiol Renal Physiol 277:F413–F427

    CAS  Google Scholar 

  81. Lai KN, Li FK, Lan HY, Tang S, Tsang AW, Chan DT, Leung JC (2001) Expression of aquaporin-1 in human peritoneal mesothelial cells and its upregulation by glucose in vitro. J Am Soc Nephrol 12:1036–1045

    PubMed  CAS  Google Scholar 

  82. Laine GA, Allen SJ (1991) Left ventricular myocardial edema. Lymph flow, interstitial fibrosis, and cardiac function. Circ Res 68:1713–1721. doi:10.1161/01.RES.68.6.1713

    PubMed  CAS  Google Scholar 

  83. Lanaspa MA, Andres-Hernando A, Li N, Rivard CJ, Cicerchi C, Roncal-Jimenez C, Schrier RW, Berl T (2010) The expression of aquaporin-1 in the medulla of the kidney is dependent on the transcription factor associated with hypertonicity, TonEBP. J Biol Chem 285:31694–31703. doi:10.1074/jbc.M109.093690

    PubMed  CAS  Google Scholar 

  84. Lee JS, Hou X, Bishop N, Wang S, Flack A, Cho WJ, Chen X, Mao G, Taatjes DJ, Sun F, Zhang K, Jena BP (2013) Aquaporin-assisted and ER-mediated mitochondrial fission: a hypothesis. Micron 47:50–58. doi:10.1016/j.micron.2013.01.005

    PubMed  CAS  Google Scholar 

  85. Lee M, Lee SJ, Choi HJ, Jung YW, Frokiaer J, Nielsen S, Kwon TH (2008) Regulation of AQP4 protein expression in rat brain astrocytes: role of P2X7 receptor activation. Brain Res 1195:1–11. doi:10.1016/j.brainres.2007.12.023

    PubMed  CAS  Google Scholar 

  86. Leitch V, Agre P, King LS (2001) Altered ubiquitination and stability of aquaporin-1 in hypertonic stress. Proc Natl Acad Sci USA 98:2894–2898. doi:10.1073/pnas.041616498

    PubMed  CAS  Google Scholar 

  87. Li L, Zhang H, Ma T, Verkman AS (2009) Very high aquaporin-1 facilitated water permeability in mouse gallbladder. Am J Physiol Gastrointest Liver Physiol 296:G816–G822. doi:10.1152/ajpgi.90680.2008

    PubMed  CAS  Google Scholar 

  88. Li SZ, McDill BW, Kovach PA, Ding L, Go WY, Ho SN, Chen F (2007) Calcineurin-NFATc signaling pathway regulates AQP2 expression in response to calcium signals and osmotic stress. Am J Physiol Cell Physiol 292:C1606–C1616. doi:10.1152/ajpcell.00588.2005

    PubMed  CAS  Google Scholar 

  89. Liang HT, Feng XC, Ma TH (2008) Water channel activity of plasma membrane affects chondrocyte migration and adhesion. Clin Exp Pharmacol Physiol 35:7–10. doi:10.1111/j.1440-1681.2007.04808.x

    PubMed  CAS  Google Scholar 

  90. Loo DD, Wright EM, Zeuthen T (2002) Water pumps. J Physiol 542:53–60. doi:10.1113/jphysiol.2002.018713

    PubMed  CAS  Google Scholar 

  91. Ma T, Jayaraman S, Wang KS, Song Y, Yang B, Li J, Bastidas JA, Verkman AS (2001) Defective dietary fat processing in transgenic mice lacking aquaporin-1 water channels. Am J Physiol Cell Physiol 280:C126–C134

    PubMed  CAS  Google Scholar 

  92. Ma T, Yang B, Gillespie A, Carlson EJ, Epstein CJ, Verkman AS (1998) Severely impaired urinary concentrating ability in transgenic mice lacking aquaporin-1 water channels. J Biol Chem 273:4296–4299. doi:10.1074/jbc.273.8.4296

    PubMed  CAS  Google Scholar 

  93. Ma T, Yang B, Verkman AS (1997) Cloning of a novel water and urea-permeable aquaporin from mouse expressed strongly in colon, placenta, liver, and heart. Biochem Biophys Res Commun 240:324–328. doi:10.1006/bbrc.1997.7664

    PubMed  CAS  Google Scholar 

  94. Ma T, Yang B, Verkman AS (1996) Gene structure, cDNA cloning, and expression of a mouse mercurial-insensitive water channel. Genomics 33:382–388. doi:10.1006/geno.1996.0214

    PubMed  CAS  Google Scholar 

  95. Manley GT, Fujimura M, Ma T, Noshita N, Filiz F, Bollen AW, Chan P, Verkman AS (2000) Aquaporin-4 deletion in mice reduces brain edema after acute water intoxication and ischemic stroke. Nat Med 6:159–163. doi:10.1038/72256

    PubMed  CAS  Google Scholar 

  96. Martinez Torres FJ, Volcker D, Dorner N, Lenhard T, Nielsen S, Haas J, Kiening K, Meyding-Lamade U (2007) Aquaporin 4 regulation during acute and long-term experimental Herpes simplex virus encephalitis. J Neurovirol 13:38–46. doi:10.1080/13550280601145340

    PubMed  CAS  Google Scholar 

  97. Masseguin C, Corcoran M, Carcenac C, Daunton NG, Guell A, Verkman AS, Gabrion J (2000) Altered gravity downregulates aquaporin-1 protein expression in choroid plexus. J Appl Physiol 88:843–850

    PubMed  CAS  Google Scholar 

  98. Matsuzaki T, Hata H, Ozawa H, Takata K (2009) Immunohistochemical localization of the aquaporins AQP1, AQP3, AQP4, and AQP5 in the mouse respiratory system. Acta Histochem Cytochem 42:159–169. doi:10.1267/ahc.09023

    PubMed  CAS  Google Scholar 

  99. McCoy ES, Haas BR, Sontheimer H (2010) Water permeability through aquaporin-4 is regulated by protein kinase C and becomes rate-limiting for glioma invasion. Neuroscience 168:971–981. doi:10.1016/j.neuroscience.2009.09.020

    PubMed  CAS  Google Scholar 

  100. McNutt NS (1975) Ultrastructure of the myocardial sarcolemma. Circ Res 37:1–13. doi:10.1161/01.RES.37.1.1

    PubMed  CAS  Google Scholar 

  101. Mehlhorn U, Geissler HJ, Laine GA, Allen SJ (2001) Myocardial fluid balance. Eur J Cardiothorac Surg 20:1220–1230. doi:10.1016/S1010-7940(01)01031-4

    PubMed  CAS  Google Scholar 

  102. Mewton N, Rapacchi S, Augeul L, Ferrera R, Loufouat J, Boussel L, Micolich A, Rioufol G, Revel D, Ovize M, Croisille P (2011) Determination of the myocardial area at risk with pre- versus post-reperfusion imaging techniques in the pig model. Basic Res Cardiol 106:1247–1257. doi:10.1007/s00395-011-0214-8

    PubMed  Google Scholar 

  103. Mobasheri A, Marples D (2004) Expression of the AQP-1 water channel in normal human tissues: a semiquantitative study using tissue microarray technology. Am J Physiol Cell Physiol 286:C529–C537. doi:10.1152/ajpcell.00408.2003

    PubMed  CAS  Google Scholar 

  104. Mobasheri A, Wray S, Marples D (2005) Distribution of AQP2 and AQP3 water channels in human tissue microarrays. J Mol Histol 36:1–14. doi:10.1007/s10735-004-2633-4

    PubMed  CAS  Google Scholar 

  105. Molinas SM, Trumper L, Marinelli RA (2012) Mitochondrial aquaporin-8 in renal proximal tubule cells: evidence for a role in the response to metabolic acidosis. Am J Physiol Renal Physiol 303:F458–F466. doi:10.1152/ajprenal.00226.2012

    PubMed  CAS  Google Scholar 

  106. Moon C, King LS, Agre P (1997) AQP1 expression in erythroleukemia cells: genetic regulation of glucocorticoid and chemical induction. Am J Physiol Cell Physiol 273:C1562–C1570

    CAS  Google Scholar 

  107. Moore M, Ma T, Yang B, Verkman AS (2000) Tear secretion by lacrimal glands in transgenic mice lacking water channels AQP1, AQP3, AQP4 and AQP5. Exp Eye Res 70:557–562. doi:10.1006/exer.1999.0814

    PubMed  CAS  Google Scholar 

  108. Mouren S, Delayance S, Mion G, Souktani R, Fellahi JL, Arthaud M, Baron JF, Viars P (1995) Mechanisms of increased myocardial contractility with hypertonic saline solutions in isolated blood-perfused rabbit hearts. Anesth Analg 81:777–782. doi:10.1097/00000539-199510000-00021

    PubMed  CAS  Google Scholar 

  109. Nakahama K, Nagano M, Fujioka A, Shinoda K, Sasaki H (1999) Effect of TPA on aquaporin 4 mRNA expression in cultured rat astrocytes. Glia 25:240–246. doi:10.1002/(SICI)1098-1136(19990201)

    PubMed  CAS  Google Scholar 

  110. Nakane A, Kojima Y, Hayashi Y, Kohri K, Masui S, Nishinakamura R (2009) Pax2 overexpression in embryoid bodies induces upregulation of integrin alpha8 and aquaporin-1. In Vitro Cell Dev Biol Anim 45:62–68. doi:10.1007/s11626-008-9151-8

    PubMed  CAS  Google Scholar 

  111. Neely JD, Christensen BM, Nielsen S, Agre P (1999) Heterotetrameric composition of aquaporin-4 water channels. Biochemistry 38:11156–11163. doi:10.1021/bi990941s

    PubMed  CAS  Google Scholar 

  112. Nejsum LN, Elkjaer M, Hager H, Frokiaer J, Kwon TH, Nielsen S (2000) Localization of aquaporin-7 in rat and mouse kidney using RT-PCR, immunoblotting, and immunocytochemistry. Biochem Biophys Res Commun 277:164–170. doi:10.1006/bbrc.2000.3638

    PubMed  CAS  Google Scholar 

  113. Nicchia GP, Mola MG, Pisoni M, Frigeri A, Svelto M (2007) Different pattern of aquaporin-4 expression in extensor digitorum longus and soleus during early development. Muscle Nerve 35:625–631. doi:10.1002/mus.20736

    PubMed  CAS  Google Scholar 

  114. Nicchia GP, Srinivas M, Li W, Brosnan CF, Frigeri A, Spray DC (2005) New possible roles for aquaporin-4 in astrocytes: cell cytoskeleton and functional relationship with connexin43. Faseb J 19:1674–1676. doi:10.1096/fj.04-3281fje

    PubMed  CAS  Google Scholar 

  115. Nielsen S, Nagelhus EA, Amiry-Moghaddam M, Bourque C, Agre P, Ottersen OP (1997) Specialized membrane domains for water transport in glial cells: high-resolution immunogold cytochemistry of aquaporin-4 in rat brain. J Neurosci 17:171–180

    PubMed  CAS  Google Scholar 

  116. Nielsen S, Smith BL, Christensen EI, Agre P (1993) Distribution of the aquaporin CHIP in secretory and resorptive epithelia and capillary endothelia. Proc Natl Acad Sci USA 90:7275–7279. doi:10.1073/pnas.90.15.7275

    PubMed  CAS  Google Scholar 

  117. Ogura T, Imanishi S, Shibamoto T (2002) Osmometric and water-transporting properties of guinea pig cardiac myocytes. Jpn J Physiol 52:333–342. doi:10.2170/jjphysiol.52.333

    PubMed  Google Scholar 

  118. Ogura T, Matsuda H, Imanishi S, Shibamoto T (2002) Sarcolemmal hydraulic conductivity of guinea-pig and rat ventricular myocytes. Cardiovasc Res 54:590–600. doi:10.1016/S0008-6363(02)00267-5

    PubMed  CAS  Google Scholar 

  119. Ohtani O, Ohtani Y, Carati CJ, Gannon BJ (2003) Fluid and cellular pathways of rat lymph nodes in relation to lymphatic labyrinths and aquaporin-1 expression. Arch Histol Cytol 66:261–272. doi:10.1679/aohc.66.261

    PubMed  CAS  Google Scholar 

  120. Oshio K, Watanabe H, Song Y, Verkman AS, Manley GT (2005) Reduced cerebrospinal fluid production and intracranial pressure in mice lacking choroid plexus water channel aquaporin-1. Faseb J 19:76–78. doi:10.1096/fj.04-1711fje

    PubMed  CAS  Google Scholar 

  121. Page E, Winterfield J, Goings G, Bastawrous A, Upshaw-Earley J (1998) Water channel proteins in rat cardiac myocyte caveolae: osmolarity-dependent reversible internalization. Am J Physiol Heart Circ Physiol 274:H1988–H2000

    CAS  Google Scholar 

  122. Papadopoulos MC, Manley GT, Krishna S, Verkman AS (2004) Aquaporin-4 facilitates reabsorption of excess fluid in vasogenic brain edema. Faseb J 18:1291–1293. doi:10.1096/fj.04-1723fje

    PubMed  CAS  Google Scholar 

  123. Phillips PA, Rolls BJ, Ledingham JG, Forsling ML, Morton JJ, Crowe MJ, Wollner L (1984) Reduced thirst after water deprivation in healthy elderly men. N Engl J Med 311:753–759. doi:10.1056/NEJM198409203111202

    PubMed  CAS  Google Scholar 

  124. Piper HM, Abdallah Y, Schafer C (2004) The first minutes of reperfusion: a window of opportunity for cardioprotection. Cardiovasc Res 61:365–371. doi:10.1016/j.cardiores.2003.12.012

    PubMed  CAS  Google Scholar 

  125. Promeneur D, Lunde LK, Amiry-Moghaddam M, Agre P (2013) Protective role of brain water channel AQP4 in murine cerebral malaria. Proc Natl Acad Sci USA 110:1035–1040. doi:10.1073/pnas.1220566110

    PubMed  CAS  Google Scholar 

  126. Ran X, Wang H, Chen Y, Zeng Z, Zhou Q, Zheng R, Sun J, Wang B, Lv X, Liang Y, Zhang K, Liu W (2010) Aquaporin-1 expression and angiogenesis in rabbit chronic myocardial ischemia is decreased by acetazolamide. Heart Vessels 25:237–247. doi:10.1007/s00380-009-1179-5

    PubMed  Google Scholar 

  127. Rao KV, Jayakumar AR, Reddy PV, Tong X, Curtis KM, Norenberg MD (2010) Aquaporin-4 in manganese-treated cultured astrocytes. Glia 58:1490–1499. doi:10.1002/glia.21023

    PubMed  Google Scholar 

  128. Richardson SM, Knowles R, Marples D, Hoyland JA, Mobasheri A (2008) Aquaporin expression in the human intervertebral disc. J Mol Histol 39:303–309. doi:10.1007/s10735-008-9166-1

    PubMed  CAS  Google Scholar 

  129. Rodriguez A, Catalan V, Gomez-Ambrosi J, Fruhbeck G (2011) Aquaglyceroporins serve as metabolic gateways in adiposity and insulin resistance control. Cell Cycle 10:1548–1556. doi:10.4161/cc.10.10.15672

    PubMed  CAS  Google Scholar 

  130. Ron NP, Kazianis JA, Padbury JF, Brown CM, McGonnigal BG, Sysyn GD, Sadowska GB, Stonestreet BS (2005) Ontogeny and the effects of corticosteroid pretreatment on aquaporin water channels in the ovine cerebral cortex. Reprod Fertil Dev 17:535–542. doi:10.1071/RD03044

    PubMed  CAS  Google Scholar 

  131. Ruiz-Ederra J, Verkman AS (2006) Accelerated cataract formation and reduced lens epithelial water permeability in aquaporin-1-deficient mice. Invest Ophthalmol Vis Sci 47:3960–3967. doi:10.1167/iovs.06-0229

    PubMed  Google Scholar 

  132. Rutkovskiy A, Bliksoen M, Hillestad V, Amin M, Czibik G, Valen G, Vaage J, Amiry-Moghaddam M, Stenslokken KO (2013) Aquaporin-1 in cardiac endothelial cells is downregulated in ischemia, hypoxia and cardioplegia. J Mol Cell Cardiol 56:22–33. doi:10.1016/j.yjmcc.2012.12.002

    PubMed  CAS  Google Scholar 

  133. Rutkovskiy A, Mariero LH, Nygard S, Stenslokken KO, Valen G, Vaage J (2012) Transient hyperosmolality modulates expression of cardiac aquaporins. Biochem Biophys Res Commun 425:70–75. doi:10.1016/j.bbrc.2012.07.052

    PubMed  CAS  Google Scholar 

  134. Rutkovskiy A, Stenslokken KO, Mariero LH, Skrbic B, Amiry-Moghaddam M, Hillestad V, Valen G, Perreault MC, Ottersen OP, Gullestad L, Dahl CP, Vaage J (2012) Aquaporin-4 in the heart: expression, regulation and functional role in ischemia. Basic Res Cardiol 107:280. doi:10.1007/s00395-012-0280-6

    PubMed  Google Scholar 

  135. Satoh J, Tabunoki H, Yamamura T, Arima K, Konno H (2007) Human astrocytes express aquaporin-1 and aquaporin-4 in vitro and in vivo. Neuropathology 27:245–256. doi:10.1111/j.1440-1789.2007.00774.x

    PubMed  Google Scholar 

  136. Schmiedl A, Schnabel PA, Richter J, Bretschneider HJ (1993) Close correlations between mitochondrial swelling and ATP-content in the ischemic canine myocardium. A combined morphometric and biochemical study. Pathol Res Pract 189:342–351. doi:10.1016/S0344-0338(11)80518-2

    PubMed  CAS  Google Scholar 

  137. Schnitzer JE, Oh P (1996) Aquaporin-1 in plasma membrane and caveolae provides mercury-sensitive water channels across lung endothelium. Am J Physiol Heart Circ Physiol 270:H416–H422

    CAS  Google Scholar 

  138. Schrier RW, Sharma S, Shchekochikhin D (2012) Hyponatraemia: more than just a marker of disease severity? Nat Rev Nephrol 9:37–50. doi:10.1038/nrneph.2012.246

    PubMed  Google Scholar 

  139. Sepramaniam S, Armugam A, Lim KY, Karolina DS, Swaminathan P, Tan JR, Jeyaseelan K (2010) MicroRNA 320a functions as a novel endogenous modulator of aquaporins 1 and 4 as well as a potential therapeutic target in cerebral ischemia. J Biol Chem 285:29223–29230. doi:10.1074/jbc.M110.144576

    PubMed  CAS  Google Scholar 

  140. Shalaby A, Mennander A, Rinne T, Oksala N, Aanismaa R, Narkilahti S, Paavonen T, Laurikka J, Tarkka M (2011) Aquaporin-7 expression during coronary artery bypass grafting with diazoxide. Scand Cardiovasc J 45:354–359. doi:10.3109/14017431.2011.583357

    PubMed  CAS  Google Scholar 

  141. Shanahan CM, Connolly DL, Tyson KL, Cary NR, Osbourn JK, Agre P, Weissberg PL (1999) Aquaporin-1 is expressed by vascular smooth muscle cells and mediates rapid water transport across vascular cell membranes. J Vasc Res 36:353–362. doi:10.1159/000025674

    PubMed  CAS  Google Scholar 

  142. Shibuya S, Hara H, Wakayama Y, Inoue M, Jimi T, Matsuzaki Y (2008) Aquaporin 4 mRNA levels in neuromuscular tissues of wild-type and dystrophin-deficient mice. Tohoku J Exp Med 215:313–319. doi:10.1620/tjem.215.313

    PubMed  CAS  Google Scholar 

  143. Shields SD, Mazario J, Skinner K, Basbaum AI (2007) Anatomical and functional analysis of aquaporin 1, a water channel in primary afferent neurons. Pain 131:8–20. doi:10.1016/j.pain.2006.11.018

    PubMed  CAS  Google Scholar 

  144. Silberstein C, Bouley R, Huang Y, Fang P, Pastor-Soler N, Brown D, Van Hoek AN (2004) Membrane organization and function of M1 and M23 isoforms of aquaporin-4 in epithelial cells. Am J Physiol Renal Physiol 287:F501–F511. doi:10.1152/ajprenal.00439.2003

    PubMed  CAS  Google Scholar 

  145. Sjoholm K, Palming J, Olofsson LE, Gummesson A, Svensson PA, Lystig TC, Jennische E, Brandberg J, Torgerson JS, Carlsson B, Carlsson LM (2005) A microarray search for genes predominantly expressed in human omental adipocytes: adipose tissue as a major production site of serum amyloid A. J Clin Endocrinol Metab 90:2233–2239. doi:10.1210/jc.2004-1830

    PubMed  Google Scholar 

  146. Skowronski MT, Lebeck J, Rojek A, Praetorius J, Fuchtbauer EM, Frokiaer J, Nielsen S (2007) AQP7 is localized in capillaries of adipose tissue, cardiac and striated muscle: implications in glycerol metabolism. Am J Physiol Renal Physiol 292:F956–F965. doi:10.1152/ajprenal.00314.2006

    PubMed  CAS  Google Scholar 

  147. Smith BL, Agre P (1991) Erythrocyte Mr 28,000 transmembrane protein exists as a multisubunit oligomer similar to channel proteins. J Biol Chem 266:6407–6415

    PubMed  CAS  Google Scholar 

  148. Sonoda H, Yokota-Ikeda N, Oshikawa S, Kanno Y, Yoshinaga K, Uchida K, Ueda Y, Kimiya K, Uezono S, Ueda A, Ito K, Ikeda M (2009) Decreased abundance of urinary exosomal aquaporin-1 in renal ischemia-reperfusion injury. Am J Physiol Renal Physiol 297:F1006–F1016. doi:10.1152/ajprenal.00200.2009

    PubMed  CAS  Google Scholar 

  149. Sorbo JG, Moe SE, Ottersen OP, Holen T (2008) The molecular composition of square arrays. Biochemistry 47:2631–2637. doi:10.1021/bi702146k

    PubMed  CAS  Google Scholar 

  150. Suleymanian MA, Baumgarten CM (1996) Osmotic gradient-induced water permeation across the sarcolemma of rabbit ventricular myocytes. J Gen Physiol 107:503–514. doi:10.1085/jgp.107.4.503

    PubMed  CAS  Google Scholar 

  151. Tabbutt S, Nelson DP, Tsai N, Miura T, Hickey PR, Mayer JE, Neufeld EJ (1997) Induction of aquaporin-1 mRNA following cardiopulmonary bypass and reperfusion. Mol Med 3:600–609

    PubMed  CAS  Google Scholar 

  152. Thrane AS, Rappold PM, Fujita T, Torres A, Bekar LK, Takano T, Peng W, Wang F, Thrane VR, Enger R, Haj-Yasein NN, Skare O, Holen T, Klungland A, Ottersen OP, Nedergaard M, Nagelhus EA (2011) Critical role of aquaporin-4 (AQP4) in astrocytic Ca2+ signaling events elicited by cerebral edema. Proc Natl Acad Sci USA 108:846–851. doi:10.1073/pnas.1015217108

    PubMed  CAS  Google Scholar 

  153. Thuny F, Textoris J, Amara AB, Filali AE, Capo C, Habib G, Raoult D, Mege JL (2012) The gene expression analysis of blood reveals S100A11 and AQP9 as potential biomarkers of infective endocarditis. PLoS ONE 7:e31490. doi:10.1371/journal.pone.0031490

    PubMed  CAS  Google Scholar 

  154. Umenishi F, Schrier RW (2003) Hypertonicity-induced aquaporin-1 (AQP1) expression is mediated by the activation of MAPK pathways and hypertonicity-responsive element in the AQP1 gene. J Biol Chem 278:15765–15770. doi:10.1074/jbc.M209980200

    PubMed  CAS  Google Scholar 

  155. Umenishi F, Schrier RW (2002) Induction of human aquaporin-1 gene by retinoic acid in human erythroleukemia HEL cells. Biochem Biophys Res Commun 293:913–917. doi:10.1016/s0006-291x(02)00316-9

    PubMed  CAS  Google Scholar 

  156. Umenishi F, Verkman AS (1998) Isolation of the human aquaporin-1 promoter and functional characterization in human erythroleukemia cell lines. Genomics 47:341–349. doi:10.1006/geno.1997.5125

    PubMed  CAS  Google Scholar 

  157. Vajda Z, Promeneur D, Doczi T, Sulyok E, Frokiaer J, Ottersen OP, Nielsen S (2000) Increased aquaporin-4 immunoreactivity in rat brain in response to systemic hyponatremia. Biochem Biophys Res Commun 270:495–503. doi:10.1006/bbrc.2000.2472

    PubMed  CAS  Google Scholar 

  158. van Hoek AN, Wiener MC, Verbavatz JM, Brown D, Lipniunas PH, Townsend RR, Verkman AS (1995) Purification and structure−function analysis of native, PNGase F-treated, and endo-beta-galactosidase-treated CHIP28 water channels. Biochemistry 34:2212–2219. doi:10.1021/bi00007a015

    PubMed  Google Scholar 

  159. Venero JL, Vizuete ML, Ilundain AA, Machado A, Echevarria M, Cano J (1999) Detailed localization of aquaporin-4 messenger RNA in the CNS: preferential expression in periventricular organs. Neuroscience 94:239–250. doi:10.1016/S0306-4522(99)00182-7

    PubMed  CAS  Google Scholar 

  160. Vera-Estrella R, Barkla BJ, Bohnert HJ, Pantoja O (2004) Novel regulation of aquaporins during osmotic stress. Plant Physiol 135:2318–2329. doi:10.1104/pp.104.044891

    PubMed  CAS  Google Scholar 

  161. Verkman AS (2006) Aquaporins in endothelia. Kidney Int 69:1120–1123. doi:10.1038/sj.ki.5000226

    PubMed  CAS  Google Scholar 

  162. Verkman AS, Mitra AK (2000) Structure and function of aquaporin water channels. Am J Physiol Renal Physiol 278:F13–F28

    PubMed  CAS  Google Scholar 

  163. Voigtlaender J, Heindl B, Becker BF (2002) Transmembrane water influx via aquaporin-1 is inhibited by barbiturates and propofol in red blood cells. Naunyn Schmiedebergs Arch Pharmacol 366:209–217. doi:10.1007/s00210-002-0580-8

    PubMed  CAS  Google Scholar 

  164. Wakayama Y, Jimi T, Inoue M, Kojima H, Murahashi M, Kumagai T, Yamashita S, Hara H, Shibuya S (2002) Reduced aquaporin 4 expression in the muscle plasma membrane of patients with Duchenne muscular dystrophy. Arch Neurol 59:431–437. doi:10.1001/archneur.59.3.431

    PubMed  Google Scholar 

  165. Wakayama Y, Takahashi J, Shibuya S, Inoue M, Kojima H, Oniki H, Arata S, Hara H, Jimi T, Shioda S, Sunada Y, Ohi H, Shimizu T (2007) Generation of muscle aquaporin 4 overexpressing transgenic mouse: its characterization at RNA and protein levels including freeze-fracture study. Micron 38:257–267. doi:10.1016/j.micron.2006.05.001

    PubMed  CAS  Google Scholar 

  166. Warth A, Eckle T, Kohler D, Faigle M, Zug S, Klingel K, Eltzschig HK, Wolburg H (2007) Upregulation of the water channel aquaporin-4 as a potential cause of postischemic cell swelling in a murine model of myocardial infarction. Cardiology 107:402–410. doi:10.1159/000099060

    PubMed  CAS  Google Scholar 

  167. Willerson JT, Wheelan S, Adcock RC, Templeton GH, Wildenthal K (1978) Species differences in responses to hyperosmolality and D600 in cat and rat heart. Am J Physiol Heart Circ Physiol 235:H276–H280

    CAS  Google Scholar 

  168. Wilson AJ, Carati CJ, Gannon BJ, Haberberger R, Chataway TK (2010) Aquaporin-1 in blood vessels of rat circumventricular organs. Cell Tissue Res 340:159–168. doi:10.1007/s00441-010-0927-2

    PubMed  CAS  Google Scholar 

  169. Wolburg H (1995) Orthogonal arrays of intramembranous particles: a review with special reference to astrocytes. J Hirnforsch 36:239–258

    PubMed  CAS  Google Scholar 

  170. Wollnik B, Kubisch C, Maass A, Vetter H, Neyses L (1993) Hyperosmotic stress induces immediate-early gene expression in ventricular adult cardiomyocytes. Biochem Biophys Res Commun 194:642–646. doi:10.1006/bbrc.1993.1869

    PubMed  CAS  Google Scholar 

  171. Wright AR, Rees SA (1998) Cardiac cell volume: crystal clear or murky waters? A comparison with other cell types. Pharmacol Ther 80:89–121. doi:10.1016/S0163-7258(98)00025-4

    PubMed  CAS  Google Scholar 

  172. Wu B, Beitz E (2007) Aquaporins with selectivity for unconventional permeants. Cell Mol Life Sci 64:2413–2421. doi:10.1007/s00018-007-7163-2

    PubMed  CAS  Google Scholar 

  173. Xu WB, Gu YT, Wang YF, Lu XH, Jia LS, Lv G (2008) Bradykinin preconditioning modulates aquaporin-4 expression after spinal cord ischemic injury in rats. Brain Res 1246:11–18. doi:10.1016/j.brainres.2008.09.087

    PubMed  CAS  Google Scholar 

  174. Yamamoto N, Sobue K, Miyachi T, Inagaki M, Miura Y, Katsuya H, Asai K (2001) Differential regulation of aquaporin expression in astrocytes by protein kinase C. Brain Res Mol Brain Res 95:110–116. doi:10.1016/S0169-328X(01)00254-6

    PubMed  CAS  Google Scholar 

  175. Yang B, Brown D, Verkman AS (1996) The mercurial insensitive water channel (AQP-4) forms orthogonal arrays in stably transfected Chinese hamster ovary cells. J Biol Chem 271:4577–4580. doi:10.1074/jbc.271.9.4577

    PubMed  CAS  Google Scholar 

  176. Yang B, Folkesson HG, Yang J, Matthay MA, Ma T, Verkman AS (1999) Reduced osmotic water permeability of the peritoneal barrier in aquaporin-1 knockout mice. Am J Physiol Cell Physiol 276:C76–C81

    CAS  Google Scholar 

  177. Yang B, Ma T, Verkman AS (1995) cDNA cloning, gene organization, and chromosomal localization of a human mercurial insensitive water channel. Evidence for distinct transcriptional units. J Biol Chem 270:22907–22913. doi:10.1074/jbc.270.39.22907

    PubMed  CAS  Google Scholar 

  178. Yang B, Zhao D, Verkman AS (2006) Evidence against functionally significant aquaporin expression in mitochondria. J Biol Chem 281:16202–16206. doi:10.1074/jbc.M601864200

    PubMed  CAS  Google Scholar 

  179. Yao X, Hrabetova S, Nicholson C, Manley GT (2008) Aquaporin-4-deficient mice have increased extracellular space without tortuosity change. J Neurosci 28:5460–5464. doi:10.1523/JNEUROSCI.0257-08.2008

    PubMed  CAS  Google Scholar 

  180. Zeynalov E, Chen CH, Froehner SC, Adams ME, Ottersen OP, Amiry-Moghaddam M, Bhardwaj A (2008) The perivascular pool of aquaporin-4 mediates the effect of osmotherapy in postischemic cerebral edema. Crit Care Med 36:2634–2640. doi:10.1097/CCM.0b013e3181847853

    PubMed  CAS  Google Scholar 

  181. Zhang R, Skach W, Hasegawa H, van Hoek AN, Verkman AS (1993) Cloning, functional analysis and cell localization of a kidney proximal tubule water transporter homologous to CHIP28. J Cell Biol 120:359–369. doi:10.1083/jcb.120.2.359

    PubMed  CAS  Google Scholar 

  182. Zhou B, Ann DK, Li X, Kim KJ, Lin H, Minoo P, Crandall ED, Borok Z (2007) Hypertonic induction of aquaporin-5: novel role of hypoxia-inducible factor-1alpha. Am J Physiol Cell Physiol 292:C1280–C1290. doi:10.1152/ajpcell.00070.2006

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Gjensidigestiftelsen, the Southeastern Regional Health Trust, the Jahre Foundation, the University of Oslo, and Oslo University Hospital—Ullevål, the Nansen Foundation, the Norwegian Health Association, and the Norwegian Research Council. We wish to thank our colleagues and collaborators Kåre-Olav Stensløkken, Lars H. Mariero, Marte Bliksøen, Mahmood Amiry-Moghaddam, Ole Petter Ottersen, Mubashar Amin, Vigdis Hillestad, Biljana Skrbic, Lars Gullestad, Gabor Czibik, Marie-Claude Perreault, Christen P. Dahl, Matti Tarkka, Bjørg Riber and Torun Flatebø, and our valuable advisors Kristian Prydz, Kjell Fugelli and Vladimir Dobruskin.

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arkady Rutkovskiy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rutkovskiy, A., Valen, G. & Vaage, J. Cardiac aquaporins. Basic Res Cardiol 108, 393 (2013). https://doi.org/10.1007/s00395-013-0393-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00395-013-0393-6

Keywords

Navigation