Skip to main content
Log in

A distinct subgroup of cardiomyopathy patients characterized by transcriptionally active cardiotropic erythrovirus and altered cardiac gene expression

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

An Erratum to this article was published on 26 November 2013

Abstract

Recent studies have detected erythrovirus genomes in the hearts of cardiomyopathy and cardiac transplant patients. Assessment of the functional status of viruses may provide clinically important information beyond detection of the viral genomes. Here, we report transcriptional activation of cardiotropic erythrovirus to be associated with strongly altered myocardial gene expression in a distinct subgroup of cardiomyopathy patients. Endomyocardial biopsies (EMBs) from 415 consecutive cardiac erythrovirus (B19V)-positive patients with clinically suspected cardiomyopathy were screened for virus-encoded VP1/VP2 mRNA indicating transcriptional activation of the virus, and correlated with cardiac host gene expression patterns in transcriptionally active versus latent infections, and in virus-free control hearts. Transcriptional activity was detected in baseline biopsies of only 66/415 patients (15.9 %) harbouring erythrovirus. At the molecular level, significant differences between cardiac B19V-positive patients with transcriptionally active versus latent virus were revealed by expression profiling of EMBs. Importantly, latent B19V infection was indistinguishable from controls. Genes involved encode proteins of antiviral immune response, B19V receptor complex, and mitochondrial energy metabolism. Thus, functional mapping of erythrovirus allows definition of a subgroup of B19V-infected cardiomyopathy patients characterized by virus-encoded VP1/VP2 transcripts and anomalous host myocardial transcriptomes. Cardiac B19V reactivation from latency, as reported here for the first time, is a key factor required for erythrovirus to induce altered cardiac gene expression in a subgroup of cardiomyopathy patients. Virus genome detection is insufficient to assess pathogenic potential, but additional transcriptional mapping should be incorporated into future pathogenetic and therapeutic studies both in cardiology and transplantation medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ADV:

Adenovirus

ARB:

Angiotensin receptor blocker

B19V:

Erythrovirus/parvovirus B19

DCM:

Dilated cardiomyopathy

EMB:

Endomyocardial biopsy

EPC:

Endothelial progenitor cell

ES:

Mitral valve E-point to septal separation

EV:

Enterovirus

FS:

Fractional shortening

HHV-6:

Human herpesvirus type 6

ICD:

Imlantable cadioverter defibrillator

LVBB:

Left ventricular branch block

LVEDD:

Left ventricular enddiastolic diameter

LVEF:

Left ventricular ejection fraction

LVESD:

Left ventricular endsystolic diameter

MI:

Myocardial infarction

PCR:

Polymerase chain reaction

PM:

Pacemaker

RT-QPCR:

Reverse transcription quantitative PCR

References

  1. Angelow A, Weitmann K, Schmidt M, Schwedler S, Vogt H, Havemann C, Staudt A, Felix SB, Stangl K, Klingel K, Kandolf R, Kuhl U, Lassner D, von Schlippenbach J, Schultheiss HP, Hoffmann W (2009) The German transregional collaborative research centre ‘Inflammatory Cardiomyopathy—Molecular Pathogenesis and Therapy’. Methods and baseline results from a 3-centre clinical study. Cardiology 113:222–230. doi:10.1159/000203404

    Article  PubMed  CAS  Google Scholar 

  2. Bock CT, Klingel K, Kandolf R (2010) Human parvovirus B19-associated myocarditis. N Engl J Med 362:1248–1249. doi:10.1056/NEJMc0911362

    Article  PubMed  CAS  Google Scholar 

  3. Bonsch C, Zuercher C, Lieby P, Kempf C, Ros C (2010) The globoside receptor triggers structural changes in the B19Virus capsid that facilitate virus internalization. J Virol 84:11737–11746. doi:10.1128/JVI.01143-10

    Article  PubMed  CAS  Google Scholar 

  4. Bowles NE, Richardson PJ, Olsen EG, Archard LC (1986) Detection of Coxsackie-B-virus-specific RNA sequences in myocardial biopsy samples from patients with myocarditis and dilated cardiomyopathy. Lancet 1:1120–1123. doi:10.1016/S0140-6736(86)91837-4

    Article  PubMed  CAS  Google Scholar 

  5. Breinholt JP, Moulik M, Dreyer WJ, Denfield SW, Kim JJ, Jefferies JL, Rossano JW, Gates CM, Clunie SK, Bowles KR, Kearney DL, Bowles NE, Towbin JA (2010) Viral epidemiologic shift in inflammatory heart disease: the increasing involvement of parvovirus B19 in the myocardium of pediatric cardiac transplant patients. J Heart Lung Transpl 29:739–746. doi:10.1016/j.healun.2010.03.003

    Article  Google Scholar 

  6. Brown KE, Anderson SM, Young NS (1993) Erythrocyte P antigen: cellular receptor for B19 parvovirus. Science 262:114–117. doi:10.1126/science.8211117

    Article  PubMed  CAS  Google Scholar 

  7. Brown KE, Hibbs JR, Gallinella G, Anderson SM, Lehman ED, McCarthy P, Young NS (1994) Resistance to parvovirus B19 infection due to lack of virus receptor (erythrocyte P antigen). N Engl J Med 330:1192–1196. doi:10.1056/NEJM199404283301704

    Article  PubMed  CAS  Google Scholar 

  8. De Regge N, Van Opdenbosch N, Nauwynck HJ, Efstathiou S, Favoreel HW (2010) Interferon alpha induces establishment of alphaherpesvirus latency in sensory neurons in vitro. PLoS One 5(9). doi: 10.1371/journal.pone.0013076

  9. Donoso Mantke O, Nitsche A, Meyer R, Klingel K, Niedrig M (2004) Analysing myocardial tissue from explanted hearts of heart transplant recipients and multi-organ donors for the presence of parvovirus B19 DNA. J Clin Virol 31:32–39. doi:10.1016/j.jcv.2003.12.013

    Article  PubMed  CAS  Google Scholar 

  10. Duechting A, Tschope C, Kaiser H, Lamkemeyer T, Tanaka N, Aberle S, Lang F, Torresi J, Kandolf R, Bock CT (2008) Human parvovirus B19 NS1 protein modulates inflammatory signaling by activation of STAT3/PIAS3 in human endothelial cells. J Virol 82:7942–7952. doi:10.1128/JVI.00891-08

    Article  PubMed  CAS  Google Scholar 

  11. Gruhle S, Sauter M, Szalay G, Ettischer N, Kandolf R, Klingel K (2012) The prostacyclin agonist iloprost aggravates fibrosis and enhances viral replication in enteroviral myocarditis by modulation of ERK signaling and increase of iNOS expression. Basic Res Cardiol 107:287. doi:10.1007/s00395-012-0287-z

    Article  PubMed  Google Scholar 

  12. Guan W, Cheng F, Yoto Y, Kleiboeker S, Wong S, Zhi N, Pintel DJ, Qiu J (2008) Block to the production of full-length B19Virus transcripts by internal polyadenylation is overcome by replication of the viral genome. J Virol 82:9951–9963. doi:10.1128/JVI.01162-08

    Article  PubMed  CAS  Google Scholar 

  13. Guan W, Wong S, Zhi N, Qiu J (2009) The genome of human parvovirus B19 can replicate in nonpermissive cells with the help of adenovirus genes and produces infectious virus. J Virol 83:9541–9553. doi:10.1128/JVI.00702-09

    Article  PubMed  CAS  Google Scholar 

  14. Kuethe F, Lindner J, Matschke K, Wenzel JJ, Norja P, Ploetze K, Schaal S, Kamvissi V, Bornstein SR, Schwanebeck U, Modrow S (2009) Prevalence of parvovirus B19 and human bocavirus DNA in the heart of patients with no evidence of dilated cardiomyopathy or myocarditis. Clin Infect Dis 49:1660–1666. doi:10.1086/648074

    Article  PubMed  Google Scholar 

  15. Kuhl U, Lassner D, Pauschinger M, Gross UM, Seeberg B, Noutsias M, Poller W, Schultheiss HP (2008) Prevalence of erythrovirus genotypes in the myocardium of patients with dilated cardiomyopathy. J Med Virol 80:1243–1251. doi:10.1002/jmv.21187

    Article  PubMed  CAS  Google Scholar 

  16. Kuhl U, Lassner D, von Schlippenbach J, Poller W, Schultheiss HP (2012) Interferon-beta improves survival in enterovirus-associated cardiomyopathy. J Am Coll Cardiol 60:1295–1296. doi:10.1016/j.jacc.2012.06.026

    Article  PubMed  Google Scholar 

  17. Kuhl U, Pauschinger M, Bock T, Klingel K, Schwimmbeck CP, Seeberg B, Krautwurm L, Poller W, Schultheiss HP, Kandolf R (2003) Parvovirus B19 infection mimicking acute myocardial infarction. Circulation 108:945–950. doi:10.1161/01.CIR.0000085168.02782.2C

    Article  PubMed  Google Scholar 

  18. Kühl U, Pauschinger M, Noutsias M, Seeberg B, Bock T, Lassner D, Poller W, Kandolf R, Schultheiss H-P (2005) High prevalence of viral genomes and multiple viral infections in the myocardium of adults with “Idiopathic” left ventricular dysfunction. Circulation 111:887–893. doi:10.1161/01.CIR.0000155616.07901.35

    Article  PubMed  Google Scholar 

  19. Kuhl U, Pauschinger M, Schwimmbeck PL, Seeberg B, Lober C, Noutsias M, Poller W, Schultheiss HP (2003) Interferon-beta treatment eliminates cardiotropic viruses and improves left ventricular function in patients with myocardial persistence of viral genomes and left ventricular dysfunction. Circulation 107:2793–2798. doi:10.1161/01.CIR.0000072766.67150.51

    Article  PubMed  Google Scholar 

  20. Kuhl U, Rohde M, Lassner D, Gross UM, Escher F, Schultheiss HP (2012) miRNA as activity markers in Parvo B19 associated heart disease. Herz 37:637–643. doi:10.1007/s00059-012-3656-3

    Article  PubMed  CAS  Google Scholar 

  21. Moulik M, Breinholt JP, Dreyer WJ, Kearney DL, Price JF, Clunie SK, Moffett BS, Kim JJ, Rossano JW, Jefferies JL, Bowles KR, O’Brian Smith E, Bowles NE, Denfield SW, Towbin JA (2010) Viral endomyocardial infection is an independent predictor and potentially treatable risk factor for graft loss and coronary vasculopathy in pediatric cardiac transplant recipients. J Am Coll Cardiol 56:582–592. doi:10.1016/j.jacc.2010.02.060

    Article  PubMed  Google Scholar 

  22. Munakata Y, Saito-Ito T, Kumura-Ishii K, Huang J, Kodera T, Ishii T, Hirabayashi Y, Koyanagi Y, Sasaki T (2005) Ku80 autoantigen as a cellular coreceptor for human parvovirus B19 infection. Blood 106:3449–3456. doi:10.1182/blood-2005-02-0536

    Article  PubMed  CAS  Google Scholar 

  23. Norja P, Hokynar K, Aaltonen LM, Chen R, Ranki A, Partio EK, Kiviluoto O, Davidkin I, Leivo T, Eis-Hubinger AM, Schneider B, Fischer HP, Tolba R, Vapalahti O, Vaheri A, Soderlund-Venermo M, Hedman K (2006) Bioportfolio: lifelong persistence of variant and prototypic erythrovirus DNA genomes in human tissue. Proc Natl Acad Sci USA 103:7450–7453. doi:10.1073/pnas.0602259103

    Article  PubMed  CAS  Google Scholar 

  24. Noutsias M, Rohde M, Block A, Klippert K, Lettau O, Blunert K, Hummel M, Kuhl U, Lehmkuhl H, Hetzer R, Rauch U, Poller W, Pauschinger M, Schultheiss HP, Volk HD, Kotsch K (2008) Preamplification techniques for real-time RT-PCR analyses of endomyocardial biopsies. BMC Mol Biol 9:3. doi:10.1186/1471-2199-9-3

    Article  PubMed  Google Scholar 

  25. Noutsias M, Rohde M, Goldner K, Block A, Blunert K, Hemaidan L, Hummel M, Blohm JH, Lassner D, Kuhl U, Schultheiss HP, Volk HD, Kotsch K (2011) Expression of functional T-cell markers and T-cell receptor Vbeta repertoire in endomyocardial biopsies from patients presenting with acute myocarditis and dilated cardiomyopathy. Eur J Heart Fail 13:611–618. doi:10.1093/eurjhf/hfr014

    Article  PubMed  CAS  Google Scholar 

  26. Pauschinger M, Bowles NE, Fuentes-Garcia FJ, Pham V, Kuhl U, Schwimmbeck PL, Schultheiss HP, Towbin JA (1999) Detection of adenoviral genome in the myocardium of adult patients with idiopathic left ventricular dysfunction. Circulation 99:1348–1354. doi:10.1161/01.CIR.99.10.1348

    Article  PubMed  CAS  Google Scholar 

  27. Piccoli C, Quarato G, Ripoli M, D’Aprile A, Scrima R, Cela O, Boffoli D, Moradpour D, Capitanio N (2009) HCV infection induces mitochondrial bioenergetic unbalance: causes and effects. Biochim Biophys Acta 1787:539–546. doi:10.1016/j.bbabio.2008.11.00

    Article  PubMed  CAS  Google Scholar 

  28. Pozzuto T, von Kietzell K, Bock T, Schmidt-Lucke C, Poller W, Zobel T, Lassner D, Zeichhardt H, Weger S, Fechner H (2011) Transactivation of human parvovirus B19 gene expression in endothelial cells by adenoviral helper functions. Virology 411:50–64. doi:10.1016/j.virol.2010.12.019

    Article  PubMed  CAS  Google Scholar 

  29. Schenk T, Enders M, Pollak S, Hahn R, Huzly D (2009) High prevalence of human parvovirus B19 DNA in myocardial autopsy samples from subjects without myocarditis or dilative cardiomyopathy. J Clin Microbiol 47:106–110. doi:10.1128/JCM.01672-08

    Article  PubMed  CAS  Google Scholar 

  30. Schmidt-Lucke C, Spillmann F, Bock T, Kuhl U, Van Linthout S, Schultheiss HP, Tschope C (2010) Interferon beta modulates endothelial damage in patients with cardiac persistence of human parvovirus b19 infection. J Infect Dis 201:936–945. doi:10.1086/650700

    Article  PubMed  Google Scholar 

  31. Servant-Delmas A, Lefrere JJ, Morinet F, Pillet S (2010) Advances in human B19 erythrovirus biology. J Virol 84:9658–9665. doi:10.1128/JVI.00684-10

    Article  PubMed  CAS  Google Scholar 

  32. Vallbracht KB, Schwimmbeck PL, Kuhl U, Rauch U, Seeberg B, Schultheiss HP (2005) Differential aspects of endothelial function of the coronary microcirculation considering myocardial virus persistence, endothelial activation, and myocardial leukocyte infiltrates. Circulation 111:1784–1791. doi:10.1161/01.CIR.0000160863.30496.9B

    Article  PubMed  Google Scholar 

  33. Vallbracht KB, Schwimmbeck PL, Kuhl U, Seeberg B, Schultheiss HP (2004) Endothelium-dependent flow-mediated vasodilation of systemic arteries is impaired in patients with myocardial virus persistence. Circulation 110:2938–2945. doi:10.1161/01.CIR.0000146891.31481.CF

    Article  PubMed  Google Scholar 

  34. Weigel-Kelley KA, Yoder MC, Srivastava A (2003) Alpha5beta1 integrin as a cellular coreceptor for human parvovirus B19: requirement of functional activation of beta1 integrin for viral entry. Blood 102:3927–3933. doi:10.1182/blood-2003-05-1522

    Article  PubMed  CAS  Google Scholar 

  35. Wessely R, Klingel K, Santana LF, Dalton N, Hongo M, Jonathan Lederer W, Kandolf R, Knowlton KU (1998) Transgenic expression of replication-restricted enteroviral genomes in heart muscle induces defective excitation-contraction coupling and dilated cardiomyopathy. J Clin Invest 102:1444–1453. doi:10.1172/JCI1972

    Article  PubMed  CAS  Google Scholar 

  36. Wittchen F, Suckau L, Witt H, Skurk C, Lassner D, Fechner H, Sipo I, Ungethum U, Ruiz P, Pauschinger M, Tschope C, Rauch U, Kuhl U, Schultheiss HP, Poller W (2007) Genomic expression profiling of human inflammatory cardiomyopathy (DCMi) suggests novel therapeutic targets. J Mol Med 85:257–271. doi:10.1007/s00109-006-0122-9

    Article  PubMed  CAS  Google Scholar 

  37. Xiong D, Yajima T, Lim BK, Stenbit A, Dublin A, Dalton ND, Summers-Torres D, Molkentin JD, Duplain H, Wessely R, Chen J, Knowlton KU (2007) Inducible cardiac-restricted expression of enteroviral protease 2A is sufficient to induce dilated cardiomyopathy. Circulation 115:94–102. doi:10.1161/CIRCULATIONAHA.106.631093

    Article  PubMed  CAS  Google Scholar 

  38. Xu J, Nie HG, Zhang XD, Tian Y, Yu B (2011) Down-regulated energy metabolism genes associated with mitochondria oxidative phosphorylation and fatty acid metabolism in viral cardiomyopathy mouse heart. Mol Biol Rep 38:4007–4013. doi:10.1007/s11033-010-0519-y

    Article  PubMed  CAS  Google Scholar 

  39. Yilmaz A, Mahrholdt H, Athanasiadis A, Vogelsberg H, Meinhardt G, Voehringer M, Kispert EM, Deluigi C, Baccouche H, Spodarev E, Klingel K, Kandolf R, Sechtem U (2008) Coronary vasospasm as the underlying cause for chest pain in patients with PVB19 myocarditis. Heart 94:1456–1463. doi:10.1136/hrt.2007.131383

    Article  PubMed  CAS  Google Scholar 

  40. Zakrzewska K, Cortivo R, Tonello C, Panfilo S, Abatangelo G, Giuggioli D, Ferri C, Corcioli F, Azzi A (2005) Human parvovirus B19 experimental infection in human fibroblasts and endothelial cells cultures. Virus Res 114:1–5. doi:10.1016/j.virusres.2005.05.003

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the German Research Foundation (DFG) via Collaborative Research Centre SFB/TR 19 “Inflammatory Cardiomyopathy—Molecular Pathogenesis and Therapy”, and by the German Federal Ministry of Education and Research (BMBF) via KMU Innovative program (No. 616 0315296). For their excellent technical assistance we thank Ms. K. Winter, S. Ochmann, C. Seifert, M. Willner, and A. Kallel, Berlin, Germany.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Poller.

Additional information

U. Kühl, D. Lassner, H.-P. Schultheiss and W. Poller are contributing equally to this paper.

Electronic supplementary material

Below is the link to the electronic supplementary material.

395_2013_372_MOESM1_ESM.docx

Supplemental Figure 1 Panel A: Agarose gel analysis of PCR products obtained after various enzymatic pre-treatments of nucleic acids isolated from endomyocardial patient biopsies. Without DNAse digestion, a PCR product is expectedly generated from the single-stranded B19V genomic DNA contained in the biopsies (lanes 3-5). After extensive DNAse treatment of isolated nucleic acids, as used throughout the current study, no PCR could be obtained any more without reverse transcription (RT) before the PCR for VP1/VP2 sequence was conducted (lanes 6-8), indicating efficient removal of any residual viral genomic DNA. After the DNAs digestion, a PCR product was only generated if a RT reaction was conducted before the PCR (lanes 6-8, 11, 12). Panel B: In the RT-QPCR protocol used throughout this study for the quantification of viral sequences, there was also no signal after DNAse digestion without reverse transcription prior to quantitative PCR (lanes 2, 3, 5, 8). Quality controls as shown here in two patients (# 3512 for 2 biopsies, and #7806) were conducted for all patients investigated, and complete removal of viral genomic DNA by DNAse treatment before RT-qPCR was confirmed in all cases. The viral mRNA-derived quantitative signals as exemplified by lanes 4, 6, and 9 appear only after a reverse transcription (RT) before qPCR. (DOCX 823 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuhl, U., Lassner, D., Dorner, A. et al. A distinct subgroup of cardiomyopathy patients characterized by transcriptionally active cardiotropic erythrovirus and altered cardiac gene expression. Basic Res Cardiol 108, 372 (2013). https://doi.org/10.1007/s00395-013-0372-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00395-013-0372-y

Keywords

Navigation