Skip to main content

Advertisement

Log in

RETRACTED ARTICLE: Postconditioning promotes the cardiac repair through balancing collagen degradation and synthesis after myocardial infarction in rats

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

This article was retracted on 12 February 2015

Abstract

Postconditioning (Postcon) reduces infarct size. However, its role in modulation of cardiac repair after infarction is uncertain. This study tested the hypothesis that Postcon inhibits adverse cardiac repair by reducing degradation of extracellular matrix (ECM) and synthesis of collagens via modulating matrix metalloproteinase (MMP) activity and transforming growth factor (TGF) β1/Smad signaling pathway. Sprague–Dawley rats were subjected to 45 min ischemia followed by 3 h, 7 or 42 days of reperfusion, respectively. In acute studies, four cycles of 10/10 s Postcon significantly reduced infarct size, which was blocked by administration of a mitochondrial KATP channel blocker, 5-hydroxydecanoate (5-HD) at reperfusion. In chronic studies, Postcon inhibited MMP activity and preserved ECM from degradation as evidenced by reduced extent of collagen-rich scar and increased mass of viable myocardium. Along with a reduction in collagen synthesis and fibrosis, Postcon significantly down-regulated expression of TGFβ1 and phospho-Smad2/3, and up-regulated Smad7 as compared to the control, consistent with a reduction in the population of α-smooth muscle actin expressing myofibroblasts within the infarcted myocardium. At 42 days of reperfusion, echocardiography showed significant improvements in left ventricular end-diastolic volume and ejection fraction. The wall thickness of the infarcted middle anterior septum in the Postcon was also significantly greater than that in the control. The beneficial effects of Postcon on cardiac repair were comparable to preconditioning and still evident after a blockade with 5-HD. These data suggest that Postcon is effective to promote cardiac repair and preserve cardiac function; protection is potentially mediated by inhibiting ECM degradation and collagen synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Bell RM, Yellon DM (2012) Conditioning the whole heart—not just cardiomyocyte. J Mol Cell Cardiol 53:24–32. doi:10.1016/j.yjmcc.2012.04.001

    Article  CAS  PubMed  Google Scholar 

  2. Belvisi MG, Bottomley KM (2003) The role of matrix metalloproteinases (MMPs) in the pathophysiology of chronic obstructive pulmonary disease (COPD): a therapeutic role for inhibitors of MMPs? Inflamm Res 52:95–100. doi:http://www.ncbi.nlm.nih.gov/pubmed/12755372

    Article  CAS  PubMed  Google Scholar 

  3. Berthonneche C, Sulpice T, Boucher F, Gouraud L, de Leiris J, O’Connor SE, Herbert JM, Janiak P (2004) New insights into the pathological role of TNF-a in early cardiac dysfunction and subsequent heart failure after infarction in rats. Am J Physiol (Heart Circ Physiol) 287:H340–H350. doi:10.1152/ajpheart.01210.2003

    Article  CAS  Google Scholar 

  4. Boengler K, Hilfiker-Kleiner D, Heusch G, Schulz R (2010) Inhibition of permeability transition pore opening by mitochondrial SATAT3 and its role in myocardial ischemia/reperfusion. Basic Res Cardiol 105:771–785. doi:10.1007/s00395-010-0124-1

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Brown RD, Ambler SK, Mitchell MD, Long CS (2005) The cardiac fibroblast: therapeutic target in myocardial remodeling and failure. Ann Rev Pharmacol Toxicol 45:657–687. doi:10.1146/annurev.pharmtox.45.120403.095802

    Article  CAS  Google Scholar 

  6. Bujak M, Frangogiannis NG (2006) The role of TGF-β signaling in myocardial infarction and cardiac remodeling. Cardiovascular Res 74:184–195. doi:10.1016/j.cardiores.2006.10.002

    Article  Google Scholar 

  7. Cheung PY, Sawicki G, Wozniak M, Wang W, Radomski MW, Schulz R (2000) Matrix metalloproteinase-2 contributes to ischemia-reperfusion injury in the heart. Circulation 101:1833–1839. doi:10.1161/01.CIR.101.15.1833

    Article  CAS  PubMed  Google Scholar 

  8. Cohen MV, Yang XM, Downey JM (2007) The pH hypothesis of postconditioning: staccato reperfusion reintroduces oxygen and perpetuates myocardial acidosis. Circulation 115:1895–1903. doi:10.1161/CIRCULATIONAHA.106.675710

    Article  PubMed  Google Scholar 

  9. Dobazewski M, Bujak M, Li N, Gonzalez-Quesada C, Mendoza LH, Wang XF, Frangogiannis NG (2010) Smad3 signaling critically regulates fibroblast phenotype and function in healing myocardial infarction. Circ Res 107:418–428. doi:10.1161/CIRCRESAHA.109.216101

    Article  Google Scholar 

  10. Douhidel O, Pons S, Souktani R, Zini R, Berdeaux A, Ghaleh B (2008) Myocardial postconditioning against ischemia-reperfusion is impaired in ob/ob mice. Am J Physiol (Heart Circ Physiol) 295:H1508–H1586. doi:10.1152/ajpheart.00379.2008

    Google Scholar 

  11. Euler-Taimor G, Heger J (2006) The complex pattern of SMAD signaling in the cardiovascular system. Cardiovascular Res 69:15–25. doi:10.1016/j.cardiores.2005.07.007

    Article  CAS  Google Scholar 

  12. Falk V, Soccal PM, Grunenfelder J, Hoyt G, Walther T, Robbins RC (2002) Regulation of matrix metalloproteinases and effect of MMP-inhibition in heart transplant related reperfusion injury. Eur J Cardio thorac Surg 22:53–58. doi:10.1007/s00109-004-0606-4

    Article  CAS  Google Scholar 

  13. Freixa X, Bellera N, Ortiz-Perez JT, Jimenez M, Pare C, Bosch X, De Caralt TM, Betriu A, Masotti M (2012) Ischemic postconditioning revisited: lack of effects on infarct size following primary percutaneous coronary intervention. Eur Heart J 33:103–112. doi:10.1093/eurheartj/ehr297

    Article  PubMed  Google Scholar 

  14. Garcia S, Henry TD, Wang YL, Chavez IJ, Pedersen WR, Lesser JR, Shroff GR, Moore L, Traverse JH (2011) Long-term follow-up of patients underlying postconditioning during ST-elevation myocardial infarction. J Cardiovasc Trans Res 4:92–98. doi:10.1007/s12265-010-9252-0

    Article  Google Scholar 

  15. Granfeldt AV-J, Jiang R, Wang NP, Mykytenko J, Eldaif S, Deneve J, Guyton RA, Zhao ZQ, Vinten-Johansen J (2012) Neutrophil inhibition contributes to cardioprotection by postconditioning. Acta Anaesthesiol Scand 56:48–56. doi:10.1111/j.1399-6576.2011.02577.x

    Article  CAS  PubMed  Google Scholar 

  16. Hausenloy DJ, Lecour S, Yellon DM (2011) RISK and SAFE pro-survival signaling pathways in ischemic postconditioning: two sides of the same coin. Antioxid Redox Signal 14:893–907. doi:10.1089/ars.2010.3360

    Article  CAS  PubMed  Google Scholar 

  17. Heinzel FR, Luo Y, Li XK, Boengler K, Buechert A, Garcia-Dorado D, Di Lisa F, Schulz R, Heusch G (2005) Impairment of diazoxide-induced formation of reactive oxygen species and loss of cardioprotection in connexin 43 deficient mice. Cir Res 97:583–586. doi:10.1161/01.RES.0000181171.65293.65

    Article  CAS  Google Scholar 

  18. Heusch G (2011) Reduction of infarct size by ischemic post-conditioning in humans: fact or fiction? Eur Heart J 33:13–15. doi:10.1093/eurheartj/ehr341

    Article  PubMed  Google Scholar 

  19. Heusch G, Bu chert A, Feldhaus S, Schulz R (2006) No loss of cardioprotection by postconditioning in connexin 43-deficient mice. Basic Res Cardiol 101:354–356. doi:10.1007/s00395-006-0589-0

    Article  CAS  PubMed  Google Scholar 

  20. Heusch G, Musiolik J, Gedik N, Skyschally A (2011) Mitochondrial STAT3 activation and cardioprotection by ischemic postconditioning in pigs with regional myocardial ischemia/reperfusion. Circ Res 109:1302–1308. doi:10.1161/CIRCRESAHA.111.255604

    Article  CAS  PubMed  Google Scholar 

  21. Heusch G (2012) Cardioprotection: chances and challenges of its translation to the clinic. Lancet. doi: 10.1016/S0140-6736(12)60916-7

  22. Hinz B (2007) Formation and function of the myofibroblast during tissue repair. J Invest Dermatol 127:526–537. doi:10.1038/sj.jid.5700613

    Article  CAS  PubMed  Google Scholar 

  23. Kleinbongard P, Heusch G, Schulz R (2010) TNFα in atherosclerosis, myocardial ischemia/reperfusion and heart failure. Pharmacol Therap 127:295–314. doi:10.1016/j.pharmthera.2010.05.002

    Article  CAS  Google Scholar 

  24. Kin H, Wang NP, Mykytenko J, Reeves J, Deneve J, Jiang R, Zatta AJ, Guyton RA, Vinten-Johansen J, Zhao ZQ (2007) Inhibition of myocardial apoptosis by postconditioning is associated with attenuation of oxidative stress-mediated nuclear factor-kappa B translocation and TNF alpha release. Shock 29:761–768. doi:10.1097/SHK.0b013e31815cfd5a

    Google Scholar 

  25. Lonborg J, Kelbak H, Vejlstrup N, Jorgensen E, Helqvist S, Saunamaki K, Clemmensen P, Holmvang L, Treiman M, Jensen JS, Engstrom T (2010) Cardioprotective effects of ischemic postconditioning in patients treated with primary percutaneous coronary intervention, evaluated by magnetic resonance. Circ Cardiovasc Interv 3:34–41. doi:10.1161/CIRCINTERVENTIONS.109.905521

    Article  PubMed  Google Scholar 

  26. Lonborg J, Holmvang L, Kelbak H, Vejlstrup N, Jorgensen E, Helqvist S, Saunamaki K, Clemmensen P, Treiman M, Jensen JS, Engstrom T (2010) ST-segment resolution and clinical outcome with ischemic postconditioning and comparison to magnetic resonance. Am Heart J 160:1085–1091. doi:10.1016/j.ahj.2010.09.026

    Article  PubMed  Google Scholar 

  27. Leconte C, Tixier E, Freret T, Toutain J, Saulnier R, Boulouard M, Roussel S, Schumann-Bard P, Bernaudin M (2009) Delayed postconditioning protects against cerebral ischemia in the mouse. Stroke 40:3349–3355. doi:10.1161/STROKEAHA.109.557314

    Article  PubMed  Google Scholar 

  28. Lindsey ML, Mann DL, Entman ML, Spinale FG (2003) Extracellular matrix remodeling following myocardial injury. Ann Med 35:316–326. doi:10.1080/07853890310001285

    Article  CAS  PubMed  Google Scholar 

  29. Longacre LS, Kloner RA, Arai AE, Baners CP, Bolli R, Braunwald E, Downey J, Gibbons RJ, Gottlieb RA, Heusch G, Jennings RB, Lefer DJ, Mentzer RM, Murphy E, Ovize M, Ping P, Przyklenk K, Sack MN, Vander Heider RS, Vinten-Johansen J, Yellon DM (2011) New horizons in cardioprotection: recommendations from the 2010 national heart, lung, and blood insititute workshop. Circulation 124:1172–1179. doi:10.1161/CIRCULATIONAHA.111.032698

    Article  PubMed Central  Google Scholar 

  30. Luo W, Li B, Lin G, Huang R (2007) Postconditioning in cardiac surgery for tetralogy of Fallot. J Thorac Cardiovasc Surg 133:1373–1374. doi:10.1016/j.jtcvs.2007.01.028

    Article  PubMed  Google Scholar 

  31. Minatoguchi S, Takemura G, Chen XH, Wang N, Uno Y, Koda M, Arai M, Misao Y, Lu C, Suzuki K, Goto K, Komada A, Takahashi T, Kosai K, Fujiwara T, Fujiwara H (2004) Acceleration of the healing process and myocardial regeneration may be important as a mechanism of improvement of cardiac function and remodeling by postinfarction granulocyte colony-stimulating factor treatment. Circulation 109:2572–2580. doi:10.1161/01.CIR.0000129770.93985.3E

    Article  CAS  PubMed  Google Scholar 

  32. Mykytenko J, Reeves JG, Kin H, Zatta AJ, Jiang R, Guyton RA, Vinten-Johansen J, Zhao ZQ (2008) Persistent beneficial effect of postconditioning against infarct size: role of mitochondrial KATP channel activation during reperfusion. Basic Res Cardiol 103:472–484. doi:10.1007/s00395-008-0731-2

    Article  CAS  PubMed  Google Scholar 

  33. Okada H, Takemura G, Kosai K, Li Y, Takahashi T, Esaki M, Yuge K, Miyata S, Maruyama R, Mikami A, Minatoguchi S, Fujiwara T, Fujiwara H (2005) Postinfarction gene therapy against transforming growth factor-beta signal modulates infarct tissue dynamics and attenuates left ventricular remodeling and heart failure. Circulation 111:2430–2437. doi:10.1161/01.CIR.0000165066.71481.8E

    Article  CAS  PubMed  Google Scholar 

  34. Pain T, Yang X-M, Critz SD, Yue Y, Nakano A, Liu GS, Heusch G, Cohen MV, Downey JM (2000) Opening of mitochondrial KATP channels triggers the preconditioned state by generating free radicals. Circ Res 87:460–466. doi:10.1161/01.RES.87.6.460

    Article  CAS  PubMed  Google Scholar 

  35. Payne TR, Oshima H, Okada M, Momoi N, Tobita K, Keller BB, Peng H, Huard J (2007) A relationship between vascular endothelial growth factor, angiogenesis, and cardiac repair after muscle stem cell transplantation into ischemic hearts. J Am Coll Cardiol 50:1677–1684. doi:10.1016/j.jacc.2007.04.100

    Article  CAS  PubMed  Google Scholar 

  36. Penna C, Pasqua T, Perrelli MG, Pagliaro P, Cerra MC, Angelone T (2012) Postconditioning with glucagon like peptide-2 reduces ischemia-reperfusion injury in isolated rat hearts: role of survival kinases and mitochondrial KATP channels. Basic Res Cardiol 107:272–280. doi:10.1007/s00395-012-0272-6

    Article  PubMed  Google Scholar 

  37. Penna C, Rastaldo R, Mancardi D, Raimondo S, Cappello S, Gattullo D, Losano G, Pagliaro P (2006) Post-conditioning induced cardioprotection requires signaling through a redox-sensitive mechanism, mitochondrial ATP-sensitive K+ channel and protein kinase C activation. Basic Res Cardiol 101:180–189. doi:10.1007/s00395-006-0584-5

    Article  CAS  PubMed  Google Scholar 

  38. Prasad A, Stone GW, Holmes DR, Gersh B, Dphil C (2009) Reperfusion injury, microvascular dysfunction, and cardioprotection: the “dark side” of reperfusion. Circulation 120:2105–2112. doi:10.1161/CIRCULATIONAHA.108.814640

    Article  PubMed  Google Scholar 

  39. Przyklenk K, Maynard M, Greiner DL, Whittaker P (2011) Cardioprotection with postconditioning: loss of efficacy in murine models of type-2 and type-1 diabetes. Antioxid Redox Signal 14:781–790. doi:10.1089/ars.2010.3343

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Ren C, Gao XW, Niu G, Yan ZM, Chen XY, Zhao H (2008) Delayed postconditioning protects against focal ischemic brain injury in rats. PLoS ONE 3:1–12. doi:10.1371/journal.pone.0003851

    Google Scholar 

  41. Rohde LE, Aikawa M, Cheng GC, Sukhova G, Solomon SD, Libby P, Pfeffer J, Pfeffer MA, Lee RT (1999) Echocardiography-derived left ventricular end-systolic regional wall stress and matrix remodeling after experimental myocardial infarction. J Am Coll Cardiol 33:835–842. doi:10.1016/S0735-1097(98)00602-0

    Article  CAS  PubMed  Google Scholar 

  42. Roubille F, Franck-Miclo A, Covinhes A, Lafont C, Cransac F, Combes S, Vincent A, Fontanaud P, Sportouch-Dukhan C, Redt-Clouet C, Nargeot J, Piot C, Barre’re-Lemaire S (2011) Delayed postconditioning in the mouse heart in vivo. Circulation 124:1330–1336. doi:10.1161/CIRCULATIONAHA.111.031864

    Article  PubMed  Google Scholar 

  43. Sadat U, Walsh SR, Varty K (2008) Cardioprotection by ischemic postconditioning during surgical procedures. Expert Rev Cardiovasc Ther 6:999–1006. doi:10.1586/14779072.6.7.999

    Article  PubMed  Google Scholar 

  44. Sandu N, Schaller B (2010) Postconditioning: a new or old option after ischemic stroke? Expert Rev 8:479–482. doi:10.1586/erc.09.180

    Google Scholar 

  45. Sorensson P, Salem N, Bouvier F, Bohm F, Settergren M, Caidahl K, Tornvall P, Arheden H, Ryden L, Pernow J (2010) Effect of postconditioning on infarct size in patients with ST elevation myocardial infarction. Heart 96:1710–1715. doi:10.1136/hrt.2010.199430

    Article  PubMed  Google Scholar 

  46. Spinale FG, Gunasinghe H, Sprunger PD, Baskin JM, Bradham WC (2002) Extracellular degradative pathways in myocardial remodeling and progression to heart failure. J Card Fail 8:S332–S338. doi:10.1054/jcaf.2002.129259

    Article  CAS  PubMed  Google Scholar 

  47. Staat P, Rioufol G, Piot C, Cottin Y, Cung TT, L’Huillier I, Aupetit J-F, Bonnefoy E, Finet G, Andre-Fouet X, Ovize M (2005) Postconditioning the human heart. Circulation 112:2143–2148. doi:10.1161/CIRCULATIONAHA.105.558122

    Article  PubMed  Google Scholar 

  48. Sun Y (2009) Myocardial repair/remodeling following infarction: roles of local factors. Cardiovascular Res 81:482–490. doi:10.1016/j.yjmcc.2009.08.002

    Article  CAS  Google Scholar 

  49. Sun HY, Wang NP, Kerendi F, Halkos M, Kin H, Guyton RA, Vinten-Johansen J, Zhao ZQ (2005) Hypoxic postconditioning reduces cardiomyocyte loss by inhibiting ROS generation and intracellular Ca2 + overload. Am J Physiol (Heart Circ Physiol) 288:H1900–H1908. doi:10.1152/ajpheart.01244.2003

    Article  CAS  Google Scholar 

  50. Tao ZY, Cavasin MA, Yang F, Liu YH, Yang XP (2004) Temporal changes in matrix metalloproteinase expression and inflammatory response associated with cardiac rupture after myocardial infarction in mice. Life Sci 74:1561–1572. doi:10.1016/j.lfs.2003.09.042

    Article  CAS  PubMed  Google Scholar 

  51. Tessone A, Feinberg MS, Barbash IM, Reich R, Holbova R, Richmann M, Mardor Y, Leor J (2005) Effect of matrix metalloproteinase inhibition by doxycycline on myocardial healing and remodeling after myocardial infarction. Cardiovasc Drugs Ther 19:383–390. doi:10.1007/s10557-005-5201-6

    Article  CAS  PubMed  Google Scholar 

  52. Thibault H, Piot C, Staat P, Bontemps L, Sportouch C, Rioufol G, Cung TT, Bonnefoy E, Angoulvant D, Aupetit JF, Finet G, Andre-Fouet X, Macia JC, Raczka F, Rossi R, Itti R, Kirkorian G, Derumeaux G, Ovize M (2008) Long-term benefit of postconditioning. Circulation 117:1037–1044. doi:10.1161/CIRCULATIONAHA.107.729780

    Article  CAS  PubMed  Google Scholar 

  53. Tsang A, Hausenloy DJ, Mocanu MM, Yellon DM (2004) Postconditioning: a form of “modified reperfusion” protects the myocardium by activating the phosphatidylinositol 3-kinase-Akt pathway. Circ Res 95:230–232. doi:10.1161/01.RES.0000138303.76488.fe

    Article  CAS  PubMed  Google Scholar 

  54. Vinten-Johansen J, Zhao ZQ, Zatta AJ, Kin H, Halkos ME, Kerendi F (2005) Postconditioning—A new link in nature’s armor against myocardial ischemia-reperfusion injury. Basic Res Cardiol 100:295–310. doi:10.1007/s00395-005-0523-x

    Article  CAS  PubMed  Google Scholar 

  55. Wang B, Omara, Angelovska T, Drobic V, Rattan SG, Jones SC, Dixon IMC (2007) Regulation of collagen synthesis by inhibitory Smad7 in cardiac myofibroblasts. Am J Physiol 293:H1282–H1290. doi:10.1152/ajpheart.00910.2006

    CAS  Google Scholar 

  56. Wei M, Xin P, Li SA, Tao JP, Li YP, Li J, Liu MY, Li JB, Zhu W, Redington AN (2011) Repeated remote ischemic postconditioning protects against adverse left ventricular remodeling and improves survival in a rat model of myocardial infarction. Cir Res 108:1220–1225. doi:10.1161/CIRCRESAHA.110.236190

    Article  CAS  Google Scholar 

  57. Yang XC, Liu Y, Wang LF, Cui L, Wang T, Ge YG, Wang HS, Li WM, Xu L, Ni ZH, Liu SH, Zhang L, Jia HM, Vinten-Johansen J, Zhao ZQ (2007) Reduction in myocardial infarct size by postconditioning in patients after percutaneous coronary intervention. J Invasive Cardiol 19:424–430

    PubMed  Google Scholar 

  58. Yuan SM, Jing H (2010) Cardiac pathologies in relation to Smad-dependent pathways. Interact Cardiovasc Thorac Surg 11:455–460. doi:10.1510/icvts.2010.234773

    Article  PubMed  Google Scholar 

  59. Zhao ZQ, Corvera JS, Halkos ME, Kerendi F, Wang NP, Guyton RA, Vinten-Johansen J (2003) Inhibition of myocardial injury by ischemic postconditioning during reperfusion: comparison with ischemic preconditioning. Am J Physiol (Heart Circ Physiol) 285:H579–H588. doi:10.1152/ajpheart.01064.2002

    CAS  Google Scholar 

  60. Zhao ZQ, Nakamura M, Wang N-P, Velez DA, Hewan-Lowe KO, Guyton RA, Vinten-Johansen J (2000) Dynamic progression of contractile and endothelial dysfunction and infarct extension in the late phase of reperfusion. J Surg Res 94:1–12. doi:10.1006/jsre.2000.6029

    Article  Google Scholar 

  61. Zhao ZQ, Puskas JD, Xu D, Wang N-P, Guyton RA, Vinten-Johansen J, Matheny R (2008) Improvement in cardiac function with small intestine extracellular matrix is associated with recruitment of c-kit cells, myofibroblasts, and macrophages after myocardial infarction. J Am Coll Cardiol 55:1250–1261. doi:10.1016/j.jacc.2009.10.049

    Article  Google Scholar 

  62. Zhou C, Li L (2012) Age may contribute to the negative cardiac effect of postconditioning on STEMI patients. Int J Cardiol. doi: 10.1016/j.ijcard.2012.09.174

Download references

Acknowledgments

This study was supported in part by a seed Grant from the Mercer University School of Medicine and National Natural Science Foundation of China (81170145/H0203).

Conflict of interest

No conflicts of interest were declared.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-Qing Zhao.

Additional information

Z.-F. Wang and N.-P. Wang contributed equally to this work.

The article “Postconditioning promotes the cardiac repair through balancing collagen degradation and synthesis after myocardial infarction in rats”, Basic Res Cardiol (2013) 108:318, was retracted by the authors who regret to have used different fields of the same samples for MMP staining and western blot assay to represent 2 distinct groups on 2 occasions in Figure 4 and 5. Some of the raw data for the earlier experiments with the use of echocardiography for Figure 8 and 9A were not available for further analysis to exclude that also the same samples were used for 2 distinct groups. The authors regret the effect of this action on the work of other investigators.

An erratum to this article is available at http://dx.doi.org/10.1007/s00395-015-0469-6.

About this article

Cite this article

Wang, ZF., Wang, NP., Harmouche, S. et al. RETRACTED ARTICLE: Postconditioning promotes the cardiac repair through balancing collagen degradation and synthesis after myocardial infarction in rats. Basic Res Cardiol 108, 318 (2013). https://doi.org/10.1007/s00395-012-0318-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00395-012-0318-9

Keywords

Navigation