Skip to main content
Log in

Proarrhythmia in a non-failing murine model of cardiac-specific Na+/Ca2+ exchanger overexpression: whole heart and cellular mechanisms

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

The cardiac Na+/Ca2+ exchanger (NCX) generates an inward electrical current during SR-Ca2+ release, thus possibly promoting afterdepolarizations of the action potential (AP). We used transgenic mice 12.5 weeks or younger with cardiomyocyte-directed overexpression of NCX (NCX-Tg) to study the proarrhythmic potential and mechanisms of enhanced NCX activity. NCX-Tg exhibited normal echocardiographic left ventricular function and heart/body weight ratio, while the QT interval was prolonged in surface ECG recordings. Langendorff-perfused NCX-Tg, but not wild-type (WT) hearts, developed ventricular tachycardia. APs and ionic currents were measured in isolated cardiomyocytes. Cell capacitance was unaltered between groups. APs were prolonged in NCX-Tg versus WT myocytes along with voltage-activated K+ currents (Kv) not being reduced but even increased in amplitude. During abrupt changes in pacing cycle length, early afterdepolarizations (EADs) were frequently recorded in NCX-Tg but not in WT myocytes. Next to EADs, delayed afterdepolarizations (DAD) triggering spontaneous APs (sAPs) occurred in NCX-Tg but not in WT myocytes. To test whether sAPs were associated with spontaneous Ca2+ release (sCR), Ca2+ transients were recorded. Despite the absence of sAPs in WT, sCR was observed in myocytes of both genotypes suggesting a facilitated translation of sCR into DADs in NCX-Tg. Moreover, sCR was more frequent in NCX-Tg as compared to WT. Myocardial protein levels of Ca2+-handling proteins were not different between groups except the ryanodine receptor (RyR), which was increased in NCX-Tg versus WT. We conclude that NCX overexpression is proarrhythmic in a non-failing environment even in the absence of reduced KV. The underlying mechanisms are: (1) occurrence of EADs due to delayed repolarization; (2) facilitated translation from sCR into DADs; (3) proneness to sCR possibly caused by altered Ca2+ handling and/or increased RyR expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Adachi-Akahane S, Lu L, Li Z, Frank JS, Philipson KD, Morad M (1997) Calcium signaling in transgenic mice overexpressing cardiac Na(+)−Ca2+ exchanger. J Gen Physiol 109:717–729. doi:10.1085/jgp.109.6.717

    Article  PubMed  CAS  Google Scholar 

  2. Ai X, Curran JW, Shannon TR, Bers DM, Pogwizd SM (2005) Ca2+/calmodulin-dependent protein kinase modulates cardiac ryanodine receptor phosphorylation and sarcoplasmic reticulum Ca2+ leak in heart failure. Circ Res 97:1314–1322. doi:10.1161/01.RES.0000194329.41863.89

    Article  PubMed  CAS  Google Scholar 

  3. Barandi L, Virag L, Jost N, Horvath Z, Koncz I, Papp R, Harmati G, Horvath B, Szentandrassy N, Banyasz T, Magyar J, Zaza A, Varro A, Nanasi PP (2010) Reverse rate-dependent changes are determined by baseline action potential duration in mammalian and human ventricular preparations. Basic Res Cardiol 105:315–323. doi:10.1007/s00395-009-0082-7

    Article  PubMed  CAS  Google Scholar 

  4. Benkusky NA, Weber CS, Scherman JA, Farrell EF, Hacker TA, John MC, Powers PA, Valdivia HH (2007) Intact beta-adrenergic response and unmodified progression toward heart failure in mice with genetic ablation of a major protein kinase A phosphorylation site in the cardiac ryanodine receptor. Circ Res 101:819–829. doi:10.1161/CIRCRESAHA.107.153007

    Article  PubMed  CAS  Google Scholar 

  5. Bers DM, Pogwizd SM, Schlotthauer K (2002) Upregulated Na/Ca exchange is involved in both contractile dysfunction and arrhythmogenesis in heart failure. Basic Res Cardiol 97(Suppl 1):I36–I42

    PubMed  Google Scholar 

  6. Beuckelmann DJ, Nabauer M, Erdmann E (1993) Alterations of K + currents in isolated human ventricular myocytes from patients with terminal heart failure. Circ Res 73:379–385. doi:10.1161/01.CIR.85.3.1046

    Article  PubMed  CAS  Google Scholar 

  7. Blaustein MP, Lederer WJ (1999) Sodium/calcium exchange: its physiological implications. Physiol Rev 79:763–854

    PubMed  CAS  Google Scholar 

  8. Bondarenko VE, Szigeti GP, Bett GC, Kim SJ, Rasmusson RL (2004) Computer model of action potential of mouse ventricular myocytes. Am J Physiol Heart Circ Physiol 287:H1378–H1403. doi:10.1152/ajpheart.00185.2003

    Article  PubMed  CAS  Google Scholar 

  9. Colquhoun D, Neher E, Reuter H, Stevens CF (1981) Inward current channels activated by intracellular Ca in cultured cardiac cells. Nature 294:752–754

    Article  PubMed  CAS  Google Scholar 

  10. Currie S, Quinn FR, Sayeed RA, Duncan AM, Kettlewell S, Smith GL (2005) Selective down-regulation of sub-endocardial ryanodine receptor expression in a rabbit model of left ventricular dysfunction. J Mol Cell Cardiol 39:309–317. doi:10.1016/j.yjmcc.2005.04.005

    Article  PubMed  CAS  Google Scholar 

  11. De Ferrari GM, Viola MC, D’Amato E, Antolini R, Forti S (1995) Distinct patterns of calcium transients during early and delayed afterdepolarizations induced by isoproterenol in ventricular myocytes. Circulation 91:2510–2515. doi:10.1161/01.CIR.91.10.2510

    Article  PubMed  CAS  Google Scholar 

  12. de Groot SH, Schoenmakers M, Molenschot MM, Leunissen JD, Wellens HJ, Vos MA (2000) Contractile adaptations preserving cardiac output predispose the hypertrophied canine heart to delayed afterdepolarization-dependent ventricular arrhythmias. Circulation 102:2145–2151. doi:10.1161/01.CIR.102.17.2145

    Article  PubMed  Google Scholar 

  13. Fabritz L, Kirchhof P, Fortmuller L, Auchampach JA, Baba HA, Breithardt G, Neumann J, Boknik P, Schmitz W (2004) Gene dose-dependent atrial arrhythmias, heart block, and brady-cardiomyopathy in mice overexpressing A(3) adenosine receptors. Cardiovasc Res 62:500–508. doi:10.1016/j.cardiores.2004.02.004

    Article  PubMed  CAS  Google Scholar 

  14. Fabritz L, Kirchhof P, Franz MR, Eckardt L, Monnig G, Milberg P, Breithardt G, Haverkamp W (2003) Prolonged action potential durations, increased dispersion of repolarization, and polymorphic ventricular tachycardia in a mouse model of proarrhythmia. Basic Res Cardiol 98:25–32. doi:10.1007/s00395-003-0386-y

    Article  PubMed  Google Scholar 

  15. Guo W, Li H, London B, Nerbonne JM (2000) Functional consequences of elimination of i(to, f) and i(to, s): early afterdepolarizations, atrioventricular block, and ventricular arrhythmias in mice lacking Kv1.4 and expressing a dominant-negative Kv4 alpha subunit. Circ Res 87:73–79. doi:10.1161/01.RES.87.1.73

    Article  PubMed  CAS  Google Scholar 

  16. Hasenfuss G, Schillinger W, Lehnart SE, Preuss M, Pieske B, Maier LS, Prestle J, Minami K, Just H (1999) Relationship between Na+ − Ca2+ − exchanger protein levels and diastolic function of failing human myocardium. Circulation 99:641–648. doi:10.1161/01.CIR.99.5.641

    Article  PubMed  CAS  Google Scholar 

  17. Keating MT, Sanguinetti MC (2001) Molecular and cellular mechanisms of cardiac arrhythmias. Cell 104:569–580. doi:10.1016/S0092-8674(01)00243-4

    Article  PubMed  CAS  Google Scholar 

  18. Kimura S, Cameron JS, Kozlovskis PL, Bassett AL, Myerburg RJ (1984) Delayed afterdepolarizations and triggered activity induced in feline Purkinje fibers by alpha-adrenergic stimulation in the presence of elevated calcium levels. Circulation 70:1074–1082. doi:10.1161/01.CIR.70.6.1074

    Article  PubMed  CAS  Google Scholar 

  19. Kirchhefer U, Klimas J, Baba HA, Buchwalow IB, Fabritz L, Huls M, Matus M, Muller FU, Schmitz W, Neumann J (2007) Triadin is a critical determinant of cellular Ca cycling and contractility in the heart. Am J Physiol Heart Circ Physiol 293:H3165–H3174. doi:10.1152/ajpheart.00799.2007

    Article  PubMed  CAS  Google Scholar 

  20. Kjekshus J (1990) Arrhythmias and mortality in congestive heart failure. Am J Cardiol 65:42I–48I. doi:10.1084/jem.20051151

    Article  PubMed  CAS  Google Scholar 

  21. Kuhlmann MT, Kirchhof P, Klocke R, Hasib L, Stypmann J, Fabritz L, Stelljes M, Tian W, Zwiener M, Mueller M, Kienast J, Breithardt G, Nikol S (2006) G-CSF/SCF reduces inducible arrhythmias in the infarcted heart potentially via increased connexin43 expression and arteriogenesis. J Exp Med 203:87–97. doi:10.1084/jem.20051151

    Article  PubMed  CAS  Google Scholar 

  22. Meszaros J, Khananshvili D, Hart G (2001) Mechanisms underlying delayed afterdepolarizations in hypertrophied left ventricular myocytes of rats. Am J Physiol Heart Circ Physiol 281:H903–H914

    PubMed  CAS  Google Scholar 

  23. Milberg P, Klocke R, Frommeyer G, Quang TH, Dieks K, Stypmann J, Osada N, Kuhlmann M, Fehr M, Milting H, Nikol S, Waltenberger J, Breithardt G, Eckardt L (2011) G-CSF therapy reduces myocardial repolarization reserve in the presence of increased arteriogenesis, angiogenesis and connexin 43 expression in an experimental model of pacing-induced heart failure. Basic Res Cardiol 106:995–1008. doi:10.1007/s00395-011-0230-8

    Article  PubMed  CAS  Google Scholar 

  24. Mitra R, Morad M (1985) A uniform enzymatic method for dissociation of myocytes from hearts and stomachs of vertebrates. Am J Physiol 249:H1056–H1060

    PubMed  CAS  Google Scholar 

  25. Nerbonne JM, Kass RS (2005) Molecular physiology of cardiac repolarization. Physiol Rev 85:1205–1253. doi:10.1152/physrev.00002.2005

    Article  PubMed  CAS  Google Scholar 

  26. Noble D (2002) Influence of Na/Ca exchange stoichiometry on model cardiac action potentials. Ann N Y Acad Sci 976:133–136. doi:10.1111/j.1749-6632.2002.tb04731.x

    Article  PubMed  CAS  Google Scholar 

  27. Nuyens D, Stengl M, Dugarmaa S, Rossenbacker T, Compernolle V, Rudy Y, Smits JF, Flameng W, Clancy CE, Moons L, Vos MA, Dewerchin M, Benndorf K, Collen D, Carmeliet E, Carmeliet P (2001) Abrupt rate accelerations or premature beats cause life-threatening arrhythmias in mice with long-QT3 syndrome. Nat Med 7:1021–1027. doi:10.1038/nm0901-1021

    Article  PubMed  CAS  Google Scholar 

  28. Pogwizd SM, Bers DM (2004) Cellular basis of triggered arrhythmias in heart failure. Trends Cardiovasc Med 14:61–66. doi:10.1016/j.tcm.2003.12.002

    Article  PubMed  CAS  Google Scholar 

  29. Pogwizd SM, Qi M, Yuan W, Samarel AM, Bers DM (1999) Upregulation of Na(+)/Ca(2+) exchanger expression and function in an arrhythmogenic rabbit model of heart failure. Circ Res 85:1009–1019. doi:10.1161/01.RES.85.11.1009

    Article  PubMed  CAS  Google Scholar 

  30. Pogwizd SM, Schlotthauer K, Li L, Yuan W, Bers DM (2001) Arrhythmogenesis and contractile dysfunction in heart failure: roles of sodium-calcium exchange, inward rectifier potassium current, and residual beta-adrenergic responsiveness. Circ Res 88:1159–1167. doi:10.1161/hh1101.091193

    Article  PubMed  CAS  Google Scholar 

  31. Pott C, Goldhaber JI, Philipson KD (2007) Homozygous overexpression of the Na+−Ca2+ exchanger in mice: evidence for increased transsarcolemmal Ca2+ fluxes. Ann N Y Acad Sci 1099:310–314. doi:10.1196/annals.1387.019

    Article  PubMed  CAS  Google Scholar 

  32. Pott C, Philipson KD, Goldhaber JI (2005) Excitation-contraction coupling in Na+−Ca2+ exchanger knockout mice: reduced transsarcolemmal Ca2+ flux. Circ Res 97:1288–1295. doi:10.1161/01.RES.0000196563.84231.21

    Article  PubMed  CAS  Google Scholar 

  33. Pott C, Yip M, Goldhaber JI, Philipson KD (2007) Regulation of cardiac L-type Ca2+ current in Na+−Ca2+ exchanger knockout mice: functional coupling of the Ca2+ channel and the Na+−Ca2+ exchanger. Biophys J 92:1431–1437. doi:10.1529/biophysj.106.091538

    Article  PubMed  CAS  Google Scholar 

  34. Rae J, Cooper K, Gates P, Watsky M (1991) Low access resistance perforated patch recordings using amphotericin B. J Neurosci Methods 37:15–26. doi:10.1016/0165-0270(91)90017-T

    Article  PubMed  CAS  Google Scholar 

  35. Ramirez RJ, Sah R, Liu J, Rose RA, Backx PH (2011) Intracellular [Na(+)] modulates synergy between Na(+)/Ca (2+) exchanger and L-type Ca (2+) current in cardiac excitation–contraction coupling during action potentials. Basic Res Cardiol 106:967–977. doi:10.1007/s00395-011-0202-z

    Article  PubMed  CAS  Google Scholar 

  36. Reinecke H, Studer R, Vetter R, Holtz J, Drexler H (1996) Cardiac Na+/Ca2+ exchange activity in patients with end-stage heart failure. Cardiovasc Res 31:48–54. doi:10.1016/S0008-6363(95)00176-X

    PubMed  CAS  Google Scholar 

  37. Reuter H, Han T, Motter C, Philipson KD, Goldhaber JI (2004) Mice overexpressing the cardiac sodium–calcium exchanger: defects in excitation–contraction coupling. J Physiol 554:779–789. doi:10.1113/jphysiol.2003.055046

    Article  PubMed  CAS  Google Scholar 

  38. Roos KP, Jordan MC, Fishbein MC, Ritter MR, Friedlander M, Chang HC, Rahgozar P, Han T, Garcia AJ, Maclellan WR, Ross RS, Philipson KD (2007) Hypertrophy and heart failure in mice overexpressing the cardiac sodium-calcium exchanger. J Card Fail 13:318–329

    Article  PubMed  CAS  Google Scholar 

  39. Salama G, London B (2007) Mouse models of long QT syndrome. J Physiol 578:43–53. doi:10.1113/jphysiol.2006.118745

    Article  PubMed  CAS  Google Scholar 

  40. Shah M, Akar FG, Tomaselli GF (2005) Molecular basis of arrhythmias. Circulation 112:2517–2529

    Article  PubMed  Google Scholar 

  41. Sicouri S, Antzelevitch C (1991) Afterdepolarizations and triggered activity develop in a select population of cells (M cells) in canine ventricular myocardium: the effects of acetylstrophanthidin and Bay K 8644. Pacing Clin Electrophysiol 14:1714–1720

    Article  PubMed  CAS  Google Scholar 

  42. Sipido KR, Varro A, Eisner D (2006) Sodium calcium exchange as a target for antiarrhythmic therapy. Handb Exp Pharmacol 171:159–199

    Article  PubMed  CAS  Google Scholar 

  43. Sipido KR, Volders PG, de Groot SH, Verdonck F, Van de Werf F, Wellens HJ, Vos MA (2000) Enhanced Ca(2+) release and Na/Ca exchange activity in hypertrophied canine ventricular myocytes: potential link between contractile adaptation and arrhythmogenesis. Circulation 102:2137–2144. doi:10.1161/01.CIR.102.17.2137

    Article  PubMed  CAS  Google Scholar 

  44. Sossalla S, Maurer U, Schotola H, Hartmann N, Didie M, Zimmermann WH, Jacobshagen C, Wagner S, Maier LS (2011) Diastolic dysfunction and arrhythmias caused by overexpression of CaMKIIdelta(C) can be reversed by inhibition of late Na(+) current. Basic Res Cardiol 106:263–272. doi:10.1007/s00395-010-0136-x

    Article  PubMed  CAS  Google Scholar 

  45. Spencer CI, Sham JS (2003) Effects of Na+/Ca2+ exchange induced by SR Ca2 + release on action potentials and afterdepolarizations in guinea pig ventricular myocytes. Am J Physiol Heart Circ Physiol 285:H2552–H2562. doi:10.1152/ajpheart.00274.2003

    PubMed  CAS  Google Scholar 

  46. Studer R, Reinecke H, Bilger J, Eschenhagen T, Bohm M, Hasenfuss G, Just H, Holtz J, Drexler H (1994) Gene expression of the cardiac Na(+)−Ca2+ exchanger in end-stage human heart failure. Circ Res 75:443–453

    Article  PubMed  CAS  Google Scholar 

  47. Terracciano CM, Souza AI, Philipson KD, MacLeod KT (1998) Na+ −Ca2+ exchange and sarcoplasmic reticular Ca2+ regulation in ventricular myocytes from transgenic mice overexpressing the Na+ −Ca2+ exchanger. J Physiol 512(Pt 3):651–667. doi:10.1111/j.1469-7793.1998.651bd.x

    Article  PubMed  CAS  Google Scholar 

  48. Tseng GN, Wit AL (1987) Effects of reducing [Na+]o on catecholamine-induced delayed afterdepolarizations in atrial cells. Am J Physiol 253:H115–H125

    PubMed  CAS  Google Scholar 

  49. Volders PG, Kulcsar A, Vos MA, Sipido KR, Wellens HJ, Lazzara R, Szabo B (1997) Similarities between early and delayed afterdepolarizations induced by isoproterenol in canine ventricular myocytes. Cardiovasc Res 34:348–359. doi:10.1016/S0008-6363(96)00270-2

    Article  PubMed  CAS  Google Scholar 

  50. Waldeyer C, Fabritz L, Fortmueller L, Gerss J, Damke D, Blana A, Laakmann S, Kreienkamp N, Volkery D, Breithardt G, Kirchhof P (2009) Regional, age-dependent, and genotype-dependent differences in ventricular action potential duration and activation time in 410 Langendorff-perfused mouse hearts. Basic Res Cardiol 104:523–533. doi:10.1007/s00395-009-0019-1

    Article  PubMed  Google Scholar 

  51. Wang Y, Hill JA (2010) Electrophysiological remodeling in heart failure. J Mol Cell Cardiol 48:619–632

    Article  PubMed  CAS  Google Scholar 

  52. Zygmunt AC, Goodrow RJ, Weigel CM (1998) INaCa and ICl(Ca) contribute to isoproterenol-induced delayed after depolarizations in midmyocardial cells. Am J Physiol 275:H1979–H1992

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Christiane Pott, PhD, for advice on statistical analysis of our results. This study was supported by Interdisziplinäre Medizinische Forschung (IMF Po 12 06 07, to Christian Pott), a returnee fellowship of the Deutsche Forschungsgemeinschaft (DFG Po 1004-1/2 to Christian Pott), and by IZKF Münster (core unit CarTel to Paulus Kirchhof) and the Deutsche Forschungsgesmeinschaft DFG FA 413/3-1 (to Larissa Fabritz). Lars Eckardt holds the Osypka Professorship for Clinical and Experimental Rhythmology. This work contains data from the MD theses of Adam Muszynski and Matthias Ruhe.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Pott.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pott, C., Muszynski, A., Ruhe, M. et al. Proarrhythmia in a non-failing murine model of cardiac-specific Na+/Ca2+ exchanger overexpression: whole heart and cellular mechanisms. Basic Res Cardiol 107, 247 (2012). https://doi.org/10.1007/s00395-012-0247-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00395-012-0247-7

Keywords

Navigation