Skip to main content
Log in

Burn-induced apoptosis of cardiomyocytes is survivin dependent and regulated by PI3K/Akt, p38 MAPK and ERK pathways

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Survivin belongs to the family of genes known as inhibitors of apoptosis, and although it has been implicated in the prevention of cancer, its potential role in burn-induced cardiac injury is unknown. In this study, we investigated the effects of survivin blockade on burn-induced cardiac apoptosis. Using a standardized Sprague-Dawley rat model of third-degree burn injury over 40% of total body surface area, apoptosis was measured in vivo followed by in vitro assessment of burn serum-stimulated cardiomyocytes. Based on the Western blot analyses, real-time PCR, ELISA, and TUNEL, apoptosis and caspase activation both in vivo and in vitro were significantly increased after severe burn injury, while survivin expression was increased (up to 2.90-fold) during the early stage of burn injury and was almost completely abolished 8 h after the burn. Survivin-deficient cardiomyocytes, as well as hearts from rats treated with the survivin inhibitor YM155, exhibited increased caspase-3 protein and mRNA expression and apoptosis ratio at different times after the burn. Furthermore, inhibition of ERK, phosphoinositol 3-kinase contributed the burn serum-induced increase in apoptosis and caspase-3 protein expression, and decreased survivin expression, whereas burn serum-induced increase in apoptosis was attenuated by P38 mitogen-activated protein kinase inhibition. These data identify survivin as a critical anti-apoptotic regulator of cardiomyocytes after burn injury. ERK, P38 MAPK and PI3K were found to be upstream regulators of survivin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Abbate A, Scarpa S, Santini D, Palleiro J, Vasaturo F, Miller J, Morales C, Vetrovec GW, Baldi A (2006) Myocardial expression of survivin, an apoptosis inhibitor, in aging and heart failure. An experimental study in the spontaneously hypertensive rat. Int J Cardiol 111:371–376. doi:10.1016/j.ijcard.2005.07.061

    Article  PubMed  Google Scholar 

  2. Adams HR, Baxter CR, Izenberg SD (1984) Decreased contractility and compliance of the left ventricle as complications of thermal trauma. Am Heart J 108:1477–1487. doi:10.1016/0002-8703(84)90695-1

    Article  PubMed  CAS  Google Scholar 

  3. Aikawa N, Martyn JA, Burke JF (1978) Pulmonary artery catheterization and thermodilution cardiac output determination in the management of critically burned patients. Am J Surg 135:811–817

    Article  PubMed  CAS  Google Scholar 

  4. Altieri DC (2003) Survivin, versatile modulation of cell division and apoptosis in cancer. Oncogene 22:8581–8589. doi:10.1038/sj.onc.1207113

    Article  PubMed  CAS  Google Scholar 

  5. Ambrosini G, Adida C, Altieri DC (1997) A novel anti-apoptosis gene, survivin, expressed in cancer and lymphoma. Nat Med 3:917–921. doi:10.1038/nm0897-917

    Article  PubMed  CAS  Google Scholar 

  6. Baxter CR, Cook WA, Shires GT (1966) Serum myocardial depressant factor of burn shock. Surg Forum 17:1–2

    PubMed  CAS  Google Scholar 

  7. Blanc-Brude OP, Yu J, Simosa H, Conte MS, Sessa WC, Altieri DC (2002) Inhibitor of apoptosis protein survivin regulates vascular injury. Nat Med 8:987–994. doi:10.1038/nm750

    Article  PubMed  CAS  Google Scholar 

  8. Cao W, Li XQ, Zhang XN, Hou Y, Zeng AG, Xie YH, Wang SW (2010) Madecassoside suppresses LPS-induced TNF-alpha production in cardiomyocytes through inhibition of ERK, p38, and NF-kappaB activity. Int Immunopharmacol 10:723–729. doi:10.1016/j.intimp.2010.03.015

    Article  PubMed  CAS  Google Scholar 

  9. Carlson DL, Horton JW (2006) Cardiac molecular signaling after burn trauma. J Burn Care Res 27:669–675. doi:10.1097/01.BCR.0000237955.28090.41

    Article  PubMed  Google Scholar 

  10. Carlson DL, Lightfoot E Jr, Bryant DD, Haudek SB, Maass D, Horton J, Giroir BP (2002) Burn plasma mediates cardiac myocyte apoptosis via endotoxin. Am J Physiol Heart Circ Physiol 282:H1907–H1914. doi:10.1152/ajpheart.00393.2001

    PubMed  CAS  Google Scholar 

  11. Chung KK, Wolf SE, Cancio LC, Alvarado R, Jones JA, McCorcle J, King BT, Barillo DJ, Renz EM, Blackbourne LH (2009) Resuscitation of severely burned military casualties: fluid begets more fluid. J Trauma 67:231–237. doi:10.1097/TA.0b013e3181ac68cf

    Article  PubMed  Google Scholar 

  12. Correia-Pinto J, Henriques-Coelho T, Roncon-Albuquerque R Jr, Lourenco AP, Melo-Rocha G, Vasques-Novoa F, Gillebert TC, Leite-Moreira AF (2009) Time course and mechanisms of left ventricular systolic and diastolic dysfunction in monocrotaline-induced pulmonary hypertension. Basic Res Cardiol 104:535–545. doi:10.1007/s00395-009-0017-3

    Article  PubMed  Google Scholar 

  13. Ebermann L, Piper C, Kuhl U, Klingel K, Schlattner U, Siafarikas N, Zeichhardt H, Schultheiss HP, Dorner A (2009) Impact of myocardial inflammation on cytosolic and mitochondrial creatine kinase activity and expression. Basic Res Cardiol 104:247–257. doi:10.1007/s00395-008-0773-5

    Article  PubMed  CAS  Google Scholar 

  14. Fan L, Lin C, Zhuo S, Chen L, Liu N, Luo Y, Fang J, Huang Z, Lin Y, Chen J (2009) Transplantation with survivin-engineered mesenchymal stem cells results in better prognosis in a rat model of myocardial infarction. Eur J Heart Fail 11:1023–1030. doi:10.1093/eurjhf/hfp135

    Article  PubMed  CAS  Google Scholar 

  15. Finnerty CC, Herndon DN, Przkora R, Pereira CT, Oliveira HM, Queiroz DM, Rocha AM, Jeschke MG (2006) Cytokine expression profile over time in severely burned pediatric patients. Shock 26:13–19

    Article  PubMed  CAS  Google Scholar 

  16. Fischer P, Hilfiker-Kleiner D (2007) Survival pathways in hypertrophy and heart failure: the gp130-STAT3 axis. Basic Res Cardiol 102:279–297. doi:10.1007/s00395-007-0674-z

    Article  PubMed  CAS  Google Scholar 

  17. Fukuda S, Kaga S, Sasaki H, Zhan L, Zhu L, Otani H, Kalfin R, Das DK, Maulik N (2004) Angiogenic signal triggered by ischemic stress induces myocardial repair in rat during chronic infarction. J Mol Cell Cardiol 36:547–559. doi:10.1016/j.yjmcc.2004.02.002

    Article  PubMed  CAS  Google Scholar 

  18. Gamelli RL, George M, Sharp-Pucci M, Dries DJ, Radisavljevic Z (1995) Burn-induced nitric oxide release in humans. J Trauma 39:869–877

    Article  PubMed  CAS  Google Scholar 

  19. Gauglitz GG, Song J, Herndon DN, Finnerty CC, Boehning D, Barral JM, Jeschke MG (2008) Characterization of the inflammatory response during acute and post-acute phases after severe burn. Shock 30:503–507. doi:10.1097/SHK.0b013e31816e3373

    Article  PubMed  CAS  Google Scholar 

  20. Giroir BP, Horton JW, White DJ, McIntyre KL, Lin CQ (1994) Inhibition of tumor necrosis factor prevents myocardial dysfunction during burn shock. Am J Physiol 267:H118–H124

    PubMed  CAS  Google Scholar 

  21. Hedayat M, Mahmoudi MJ, Rose NR, Rezaei N (2010) Proinflammatory cytokines in heart failure: double-edged swords. Heart Fail Rev 15:543–562. doi:10.1007/s10741-010-9168-4

    Article  PubMed  CAS  Google Scholar 

  22. Horton JW (1996) Cellular basis for burn-mediated cardiac dysfunction in adult rabbits. Am J Physiol 271:H2615–H2621

    PubMed  CAS  Google Scholar 

  23. Horton JW (2004) Left ventricular contractile dysfunction as a complication of thermal injury. Shock 22:495–507. doi:10.1097/01.shk.0000145205.51682.c3

    Article  PubMed  Google Scholar 

  24. Horton JW, Maass DL, White DJ, Sanders B, Murphy J (2004) Effects of burn serum on myocardial inflammation and function. Shock 22:438–445

    Article  PubMed  Google Scholar 

  25. Hu Z, Sayeed MM (2005) Activation of PI3-kinase/PKB contributes to delay in neutrophil apoptosis after thermal injury. Am J Physiol Cell Physiol 288:C1171–C1178. doi:10.1152/ajpcell.00312.2004

    Article  PubMed  CAS  Google Scholar 

  26. Huang YS, Yang ZC, Yan BG, Yang JM, Chen FM, Crowther RS, Li A (1999) Pathogenesis of early cardiac myocyte damage after severe burns. J Trauma 46:428–432

    Article  PubMed  CAS  Google Scholar 

  27. Huribal M, Cunningham ME, D’Aiuto ML, Pleban WE, McMillen MA (1995) Endothelin-1 and prostaglandin E2 levels increase in patients with burns. J Am Coll Surg 180:318–322

    PubMed  CAS  Google Scholar 

  28. Indolfi C, Gasparri C, Vicinanza C, De Serio D, Boncompagni D, Mongiardo A, Spaccarotella C, Agosti V, Torella D, Curcio A (2011) Mitogen-activated protein kinases activation in T lymphocytes of patients with acute coronary syndromes. Basic Res Cardiol 106:667–679. doi:10.1007/s00395-011-0172-1

    Article  PubMed  CAS  Google Scholar 

  29. Janicke RU, Sprengart ML, Wati MR, Porter AG (1998) Caspase-3 is required for DNA fragmentation and morphological changes associated with apoptosis. J Biol Chem 273:9357–9360. doi:10.1074/jbc.273.16.9357

    Article  PubMed  CAS  Google Scholar 

  30. Jankowski M, Bissonauth V, Gao L, Gangal M, Wang D, Danalache B, Wang Y, Stoyanova E, Cloutier G, Blaise G, Gutkowska J (2010) Anti-inflammatory effect of oxytocin in rat myocardial infarction. Basic Res Cardiol 105:205–218. doi:10.1007/s00395-009-0076-5

    Article  PubMed  CAS  Google Scholar 

  31. Kleinbongard P, Heusch G, Schulz R (2010) TNFalpha in atherosclerosis, myocardial ischemia/reperfusion and heart failure. Pharmacol Ther 127:295–314. doi:10.1016/j.pharmthera.2010.05.002

    Article  PubMed  CAS  Google Scholar 

  32. Lang CH, Frost RA, Vary TC (2004) Thermal injury impairs cardiac protein synthesis and is associated with alterations in translation initiation. Am J Physiol Regul Integr Comp Physiol 286:R740–R750. doi:10.1152/ajpregu.00661.2003

    Article  PubMed  CAS  Google Scholar 

  33. Levkau B (2011) Survivin signalling in the heart. J Mol Cell Cardiol 50:6–8. doi:10.1016/j.yjmcc.2010.10.013

    Article  PubMed  CAS  Google Scholar 

  34. Levkau B, Schafers M, Wohlschlaeger J, von Wnuck Lipinski K, Keul P, Hermann S, Kawaguchi N, Kirchhof P, Fabritz L, Stypmann J, Stegger L, Flogel U, Schrader J, Fischer JW, Hsieh P, Ou YL, Mehrhof F, Tiemann K, Ghanem A, Matus M, Neumann J, Heusch G, Schmid KW, Conway EM, Baba HA (2008) Survivin determines cardiac function by controlling total cardiomyocyte number. Circulation 117:1583–1593. doi:10.1161/CIRCULATIONAHA.107.734160

    Article  PubMed  CAS  Google Scholar 

  35. Li XQ, Cao W, Li T, Zeng AG, Hao LL, Zhang XN, Mei QB (2009) Amlodipine inhibits TNF-alpha production and attenuates cardiac dysfunction induced by lipopolysaccharide involving PI3K/Akt pathway. Int Immunopharmacol 9:1032–1041. doi:10.1016/j.intimp.2009.04.010

    Article  PubMed  CAS  Google Scholar 

  36. Luo X, Deng J, Liu N, Zhang C, Huang Q, Liu J (2011) Cellular mechanism underlying burn serum-generated bidirectional regulation of excitation-contraction coupling in isolated rat cardiomyocytes. Shock 35:388–395. doi:10.1097/SHK.0b013e3182000379

    Article  PubMed  Google Scholar 

  37. Lupia E, Spatola T, Cuccurullo A, Bosco O, Mariano F, Pucci A, Ramella R, Alloatti G, Montrucchio G (2010) Thrombopoietin modulates cardiac contractility in vitro and contributes to myocardial depressing activity of septic shock serum. Basic Res Cardiol 105:609–620. doi:10.1007/s00395-010-0103-6

    Article  PubMed  Google Scholar 

  38. Maass DL, Hybki DP, White J, Horton JW (2002) The time course of cardiac NF-kappaB activation and TNF-alpha secretion by cardiac myocytes after burn injury: contribution to burn-related cardiac contractile dysfunction. Shock 17:293–299

    Article  PubMed  Google Scholar 

  39. Martyn JA, Snider MT, Szyfelbein SK, Burke JF, Laver MB (1980) Right ventricular dysfunction in acute thermal injury. Ann Surg 191:330–335

    Article  PubMed  CAS  Google Scholar 

  40. Michel MC, Li Y, Heusch G (2001) Mitogen-activated protein kinases in the heart. Naunyn Schmiedebergs Arch Pharmacol 363:245–266. doi:10.1007/s002100000363

    Article  PubMed  CAS  Google Scholar 

  41. Miki T, Miura T, Tanno M, Nishihara M, Naitoh K, Sato T, Takahashi A, Shimamoto K (2007) Impairment of cardioprotective PI3K–Akt signaling by post-infarct ventricular remodeling is compensated by an ERK-mediated pathway. Basic Res Cardiol 102:163–170. doi:10.1007/s00395-006-0622-3

    Article  PubMed  CAS  Google Scholar 

  42. Oppeltz RF, Zhang Q, Rani M, Sasaki JR, Schwacha MG (2010) Increased expression of cardiac IL-17 after burn. J Inflamm (Lond) 7:38. doi:10.1186/1476-9255-7-38

    Article  Google Scholar 

  43. Pereira CT, Barrow RE, Sterns AM, Hawkins HK, Kimbrough CW, Jeschke MG, Lee JO, Sanford AP, Herndon DN (2006) Age-dependent differences in survival after severe burns: a unicentric review of 1, 674 patients and 179 autopsies over 15 years. J Am Coll Surg 202:536–548. doi:10.1016/j.jamcollsurg.2005.11.002

    Article  PubMed  Google Scholar 

  44. Pfister R, Acksteiner C, Baumgarth J, Burst V, Geissler HJ, Margulies KB, Houser S, Bloch W, Flesch M (2007) Loss of beta1D-integrin function in human ischemic cardiomyopathy. Basic Res Cardiol 102:257–264. doi:10.1007/s00395-006-0640-1

    Article  PubMed  CAS  Google Scholar 

  45. Ramzy PI, Barret JP, Herndon DN (1999) Thermal injury. Crit Care Clin 15:333–352

    Article  PubMed  CAS  Google Scholar 

  46. Ryoke T, Gu Y, Ikeda Y, Martone ME, Oh SS, Jeon ES, Knowlton KU, Ross J Jr (2002) Apoptosis and oncosis in the early progression of left ventricular dysfunction in the cardiomyopathic hamster. Basic Res Cardiol 97:65–75

    Article  PubMed  Google Scholar 

  47. Santini D, Abbate A, Scarpa S, Vasaturo F, Biondi-Zoccai GG, Bussani R, De Giorgio F, Bassan F, Camilot D, Di Marino MP, Feroce F, Baldi F, Silvestri F, Crea F, Baldi A (2004) Surviving acute myocardial infarction: survivin expression in viable cardiomyocytes after infarction. J Clin Pathol 57:1321–1324. doi:10.1136/jcp.2004.018986

    Article  PubMed  CAS  Google Scholar 

  48. Skyschally A, van Caster P, Boengler K, Gres P, Musiolik J, Schilawa D, Schulz R, Heusch G (2009) Ischemic postconditioning in pigs: no causal role for RISK activation. Circ Res 104:15–18. doi:10.1161/CIRCRESAHA.108.186429

    Article  PubMed  CAS  Google Scholar 

  49. Subramanian V, Krishnamurthy P, Singh K, Singh M (2007) Lack of osteopontin improves cardiac function in streptozotocin-induced diabetic mice. Am J Physiol Heart Circ Physiol 292:H673–H683. doi:10.1152/ajpheart.00569.2006

    Article  PubMed  CAS  Google Scholar 

  50. Tan J, Maass DL, White DJ, Horton JW (2007) Effects of burn injury on myocardial signaling and cytokine secretion: possible role of PKC. Am J Physiol Regul Integr Comp Physiol 292:R887–R896. doi:10.1152/ajpregu.00555.2006

    Article  PubMed  CAS  Google Scholar 

  51. Toker A, Cantley LC (1997) Signalling through the lipid products of phosphoinositide-3-OH kinase. Nature 387:673–676. doi:10.1038/42648

    Article  PubMed  CAS  Google Scholar 

  52. Venkatesan B, Prabhu SD, Venkatachalam K, Mummidi S, Valente AJ, Clark RA, Delafontaine P, Chandrasekar B (2010) WNT1-inducible signaling pathway protein-1 activates diverse cell survival pathways and blocks doxorubicin-induced cardiomyocyte death. Cell Signal 22:809–820. doi:10.1016/j.cellsig.2010.01.005

    Article  PubMed  CAS  Google Scholar 

  53. Vindenes H, Ulvestad E, Bjerknes R (1995) Increased levels of circulating interleukin-8 in patients with large burns: relation to burn size and sepsis. J Trauma 39:635–640

    Article  PubMed  CAS  Google Scholar 

  54. Wohlschlaeger J, Meier B, Schmitz KJ, Takeda A, Takeda N, Vahlhaus C, Levkau B, Stypmann J, Schmid C, Werner Schmid K, Baba HA (2010) Cardiomyocyte survivin protein expression is associated with cell size and DNA content in the failing human heart and is reversibly regulated after ventricular unloading. J Heart Lung Transplant 29:1286–1292. doi:10.1016/j.healun.2010.06.015

    Article  PubMed  Google Scholar 

  55. Yao LL, Wang YG, Cai WJ, Yao T, Zhu YC (2007) Survivin mediates the anti-apoptotic effect of delta-opioid receptor stimulation in cardiomyocytes. J Cell Sci 120:895–907. doi:10.1242/jcs.03393

    Article  PubMed  CAS  Google Scholar 

  56. Zang QS, Maass DL, Wigginton JG, Barber RC, Martinez B, Idris AH, Horton JW, Nwariaku FE (2010) Burn serum causes a CD14-dependent mitochondrial damage in primary cardiomyocytes. Am J Physiol Heart Circ Physiol 298:H1951–H1958. doi:10.1152/ajpheart.00927.2009

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Grant from the National Natural Science Foundation of China (30800433 to X.Q. Li) and Science and Technology Innovation Project of Shaanxi Province in China (2010K01-177 to S.W. Wang).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiao-Qiang Li or Si-Wang Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

395_2011_199_MOESM1_ESM.tif

Supplementary Fig. 1 Induced survivin expression in the cardiac sections after burn injury. Survivin protein expression in the heart tissues at 0 - 8 h after burn injury was visualized by immunohistochemistry. Figures are representative of two separate and independent experiments. (TIFF 10856 kb)

395_2011_199_MOESM2_ESM.tif

Supplementary Fig. 2 The effect of sham serum on cardiomyocyte apoptosis and survivin expression. Neonatal rat cardiomyocytes were treated with sham serum for various periods of time, as indicated. a The extent of DNA fragmentation was quantified using ELISA (N=6). b Survivin and cleaved caspase-3 levels were measured by Western blot analysis. A typical display is depicted (upper panel) along with the statistical analysis of the changes of the protein (lower panel). Data are expressed as mean±S.E. (N = 3). (TIFF 12916 kb)

395_2011_199_MOESM3_ESM.tif

Supplementary Fig. 3 The effect of burn injury on P38 MAPK, JNK, ERK and Akt phosphorylation in the cardiac sections. The rats were exposed to a 40% TBSA burn (burn injury) or 25°C water (sham). The p-ERK1/2, p-P38, p-JNK and p-Akt levels at 0, 0.5, 1, 2, 4, 6, and 8 h after burn injury were measured by Western blot analysis. a The blots are representative of five rats. b The statistical analysis of the changes of the protein. Data are expressed as mean±SE *P < 0.05 vs. 0 h (TIFF 6949 kb).

395_2011_199_MOESM4_ESM.tif

Supplementary Fig. 4 The effect of sham serum on the expression of six cytokines commonly used to evaluate the inflammatory response. The levels of IL-1β, IL-6, IL-10, IL-12, TNF- α and CINC-1 were determined by ELISA according to the protocol of the manufacturer. Data are expressed as mean±S.E. (N=5, *P < 0.05 vs. time-matched control). (TIFF 10772 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao, W., Xie, YH., Li, XQ. et al. Burn-induced apoptosis of cardiomyocytes is survivin dependent and regulated by PI3K/Akt, p38 MAPK and ERK pathways. Basic Res Cardiol 106, 1207–1220 (2011). https://doi.org/10.1007/s00395-011-0199-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00395-011-0199-3

Keywords

Navigation