Skip to main content
Log in

Adipocyte-derived lipids increase angiotensin-converting enzyme (ACE) expression and modulate macrophage phenotype

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Human monocytes/macrophages express the angiotensin-converting enzyme (ACE) but nothing is known about its role under physiological conditions. As adipose tissue contains resident macrophages that have been implicated in the generation of insulin resistance in expanding fat mass, we determined whether adipocytes release factors that affect ACE expression and function in monocytes. Incubation of human monocyte-derived macrophages with conditioned medium from freshly isolated human adipocytes (BMI = 25.4 ± 0.96) resulted in a 4-fold increase in ACE expression. The effect was insensitive to denaturation and different proteases but abolished after lipid extraction. mRNA levels of the major histocompatibility complex class II protein increased in parallel with ACE, whereas the expression of tumor necrosis factor-α (TNF-α), monocyte chemoattractant protein-1 (MCP-1), interleukin (IL)-6, and cyclooxygenase-2 decreased. As a consequence of the reduction in MCP-1, monocyte recruitment was also attenuated. Moreover, adipocyte-conditioned medium prevented the interferon (IFN)-γ induced formation of TNF-α, IL-6, and MCP-1, all markers of classically-activated (M1 type) macrophages. The decrease in cytokine expression in adipocyte-conditioned medium-treated macrophages was sensitive to ACE silencing by small interfering RNA (siRNA). Accordingly, ACE overexpression in THP-1 cells mimicked the effect of adipocyte-conditioned medium. In both cell types, ACE inhibition failed to affect the changes induced by adipocyte conditioned-medium treatment and ACE overexpression. Thus, the modulation of macrophage polarization by ACE appears to be mediated independently of enzyme activity, probably via intracellular signaling. Interestingly, human macrophage ACE expression was also upregulated by IL-4 and IL-13, which promote the “alternative” activation of macrophages and decreased by LPS and IFN-γ. Mechanistically, adipocyte-conditioned medium stimulated the phosphorylation of the AMP-activated protein kinase and AMPK inhibition prevented the increase in ACE expression. Moreover, ACE expression was reduced in spleen derived-monocytes from AMPKα1−/− mice versus their wild-type littermates. These data indicate that mature adipocytes modulate the expression profile of macrophages by releasing lipid mediators that increase ACE expression via AMPK. This prevents the pro-inflammatory cytokine production by macrophages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Reference list

  1. Balyasnikova IV, Sun ZL, Metzger R, Taylor PR, Vicini E, Muciaccia B, Visintine DJ, Berestetskaya YV, McDonald TD, Danilov SM (2006) Monoclonal antibodies to native mouse angiotensin-converting enzyme (CD143): ACE expression quantification, lung endothelial cell targeting and gene delivery. Tissue Antigens 67:10–29. doi:10.1111/j.1399-0039.2005.00516.x

    Article  CAS  PubMed  Google Scholar 

  2. Benharouga M, Haardt M, Kartner N, Lukacs GL (2001) COOH-terminal truncations promote proteasome-dependent degradation of mature cystic fibrosis transmembrane conductance regulator from post-Golgi compartments. J Cell Biol 153:957–970. doi:10.1083/jcb.153.5.957

    Article  CAS  PubMed  Google Scholar 

  3. Boettger T, Beetz N, Kostin S, Schneider J, Kruger M, Hein L, Braun T (2009) Acquisition of the contractile phenotype by murine arterial smooth muscle cells depends on the Mir143/145 gene cluster. J Clin Invest 119:2634–2647. doi:10.1172/JCI38864

    Article  CAS  PubMed  Google Scholar 

  4. Bose D, Leineweber K, Konorza T, Zahn A, Brocker-Preuss M, Mann K, Haude M, Erbel R, Heusch G (2007) Release of TNF-alpha during stent implantation into saphenous vein aortocoronary bypass grafts and its relation to plaque extrusion and restenosis. Am J Physiol Heart Circ Physiol 292:H2295–H2299. doi:10.1152/ajpheart.01116.2006

    Article  PubMed  Google Scholar 

  5. Bourlier V, Zakaroff-Girard A, Miranville A, De BS, Maumus M, Sengenes C, Galitzky J, Lafontan M, Karpe F, Frayn KN, Bouloumie A (2008) Remodeling phenotype of human subcutaneous adipose tissue macrophages. Circulation 117:806–815. doi:10.1161/CIRCULATIONAHA.107.724096

    Article  CAS  PubMed  Google Scholar 

  6. Cao H, Gerhold K, Mayers JR, Wiest MM, Watkins SM, Hotamisligil GS (2008) Identification of a lipokine, a lipid hormone linking adipose tissue to systemic metabolism. Cell 134:933–944. doi:10.1016/j.cell.2008.07.048

    Article  CAS  PubMed  Google Scholar 

  7. Chen Y, Wang J, Nie R, Zhou S (2008) Endogenous pro-resolving and anti-inflammatory lipid mediators: the new hope of atherosclerotic diseases. Med Hypotheses 71:237–240. doi:10.1016/j.mehy.2008.03.026

    Article  CAS  PubMed  Google Scholar 

  8. Curat CA, Miranville A, Sengenes C, Diehl M, Tonus C, Busse R, Bouloumie A (2004) From blood monocytes to adipose tissue-resident macrophages: induction of diapedesis by human mature adipocytes. Diabetes 53:1285–1292. doi:10.2337/diabetes.53.5.1285

    Article  CAS  PubMed  Google Scholar 

  9. Danilov SM, Sadovnikova E, Scharenborg N, Balyasnikova IV, Svinareva DA, Semikina EL, Parovichnikova EN, Savchenko VG, Adema GJ (2003) Angiotensin-converting enzyme (CD143) is abundantly expressed by dendritic cells and discriminates human monocyte-derived dendritic cells from acute myeloid leukemia-derived dendritic cells. Exp Hematol 31:1301–1309. doi:10.1016/j.exphem.2003.08.018

    Article  CAS  PubMed  Google Scholar 

  10. Das UN (2005) Is angiotensin-II an endogenous pro-inflammatory molecule? Med Sci Monit 11:RA155–RA162

    CAS  PubMed  Google Scholar 

  11. Engeli S, Bohnke J, Gorzelniak K, Janke J, Schling P, Bader M, Luft FC, Sharma AM (2005) Weight loss and the renin-angiotensin-aldosterone system. Hypertension 45:356–362. doi:10.1161/01.HYP.0000154361.47683.d3

    Article  CAS  PubMed  Google Scholar 

  12. Fisslthaler B, Fleming I (2009) Activation and signaling by the AMP-activated protein kinase in endothelial cells. Circ Res 105:114–127. doi:10.1161/CIRCRESAHA.109.201590

    Article  CAS  PubMed  Google Scholar 

  13. Flegal KM, Carroll MD, Ogden CL, Johnson CL (2002) Prevalence and trends in obesity among US adults, 1999–2000. JAMA 288:1723–1727. doi:10.1001/jama.288.14.1723

    Article  PubMed  Google Scholar 

  14. Fleming I (2006) Signaling by the angiotensin-converting enzyme. Circ Res 98:887–896. doi:10.1161/01.RES.0000217340.40936.53

    Article  CAS  PubMed  Google Scholar 

  15. Fleming I, Kohlstedt K, Busse R (2005) New fACEs to the renin-angiotensin system. Physiology (Bethesda) 20:91–95. doi:10.1152/physiol.00003.2005

    CAS  Google Scholar 

  16. Fukuhara M, Geary RL, Diz DI, Gallagher PE, Wilson JA, Glazier SS, Dean RH, Ferrario CM (2000) Angiotensin-converting enzyme expression in human carotid artery atherosclerosis. Hypertension 35:353–359

    CAS  PubMed  Google Scholar 

  17. Hong C, Tontonoz P (2008) Coordination of inflammation and metabolism by PPAR and LXR nuclear receptors. Curr Opin Genet Dev 18:461–467. doi:10.1016/j.gde.2008.07.016

    Article  CAS  PubMed  Google Scholar 

  18. Jandeleit-Dahm KA, Tikellis C, Reid CM, Johnston CI, Cooper ME (2005) Why blockade of the renin-angiotensin system reduces the incidence of new-onset diabetes. J Hypertens 23:463–473

    Article  CAS  PubMed  Google Scholar 

  19. Jayasooriya AP, Mathai ML, Walker LL, Begg DP, Denton DA, Cameron-Smith D, Egan GF, McKinley MJ, Rodger PD, Sinclair AJ, Wark JD, Weisinger HS, Jois M, Weisinger RS (2008) Mice lacking angiotensin-converting enzyme have increased energy expenditure, with reduced fat mass and improved glucose clearance. Proc Natl Acad Sci USA 105:6531–6536. doi:10.1073/pnas.0802690105

    Article  CAS  PubMed  Google Scholar 

  20. Jeong HW, Hsu KC, Lee JW, Ham M, Huh JY, Shin HJ, Kim WS, Kim JB (2009) Berberine suppresses proinflammatory responses through AMPK activation in macrophages. Am J Physiol Endocrinol Metab 296:E955–E964. doi:10.1152/ajpendo.90599.2008

    Article  CAS  PubMed  Google Scholar 

  21. Jorgensen SB, Viollet B, Andreelli F, Frosig C, Birk JB, Schjerling P, Vaulont S, Richter EA, Wojtaszewski JF (2004) Knockout of the alpha2 but not alpha1 5’-AMP-activated protein kinase isoform abolishes 5-aminoimidazole-4-carboxamide-1-beta-4-ribofuranosidebut not contraction-induced glucose uptake in skeletal muscle. J Biol Chem 279:1070–1079. doi:10.1074/jbc.M306205200

    Article  CAS  PubMed  Google Scholar 

  22. Juan CC, Chien Y, Wu LY, Yang WM, Chang CL, Lai YH, Ho PH, Kwok CF, Ho LT (2005) Angiotensin II enhances insulin sensitivity in vitro and in vivo. Endocrinology 146:2246–2254. doi:10.1210/en.2004-1136

    Article  CAS  PubMed  Google Scholar 

  23. Kadl A, Meher AK, Sharma PR, Lee MY, Doran AC, Johnstone SR, Elliott MR, Gruber F, Han J, Chen W, Kensler T, Ravichandran KS, Isakson BE, Wamhoff BR, Leitinger N (2010) Identification of a novel macrophage phenotype that develops in response to atherogenic phospholipids via Nrf2. Circ Res 107:737–746. doi:10.1161/CIRCRESAHA.109.215715

    Article  CAS  PubMed  Google Scholar 

  24. Kleinbongard P, Heusch G, Schulz R (2010) TNFα in atherosclerosis, myocardial ischemia/reperfusion and heart failure. Pharmacol Ther 127:295–314. doi:10.1016/j.pharmthera.2010.05.002

    Article  CAS  PubMed  Google Scholar 

  25. Ko HJ, Zhang Z, Jung DY, Jun JY, Ma Z, Jones KE, Chan SY, Kim JK (2009) Nutrient stress activates inflammation and reduces glucose metabolism by suppressing AMP-activated protein kinase in the heart. Diabetes 58:2536–2546. doi:10.2337/db08-1361

    Article  CAS  PubMed  Google Scholar 

  26. Kohan AB, Talukdar I, Walsh CM, Salati LM (2009) A role for AMPK in the inhibition of glucose-6-phosphate dehydrogenase by polyunsaturated fatty acids. Biochem Biophys Res Commun 388:117–121. doi:10.1016/j.bbrc.2009.07.130

    Article  CAS  PubMed  Google Scholar 

  27. Kohlstedt K, Brandes RP, Muller-Esterl W, Busse R, Fleming I (2004) Angiotensin-converting enzyme is involved in outside-in signaling in endothelial cells. Circ Res 94:60–67. doi:10.1161/01.RES.0000107195.13573.E4

    Article  CAS  PubMed  Google Scholar 

  28. Kohlstedt K, Shoghi F, Muller-Esterl W, Busse R, Fleming I (2002) CK2 phosphorylates the angiotensin-converting enzyme and regulates its retention in the endothelial cell plasma membrane. Circ Res 91:749–756. doi:10.1161/01.RES.0000038114.17939.C8

    Article  CAS  PubMed  Google Scholar 

  29. Lee WJ, Lee IK, Kim HS, Kim YM, Koh EH, Won JC, Han SM, Kim MS, Jo I, Oh GT, Park IS, Youn JH, Park SW, Lee KU, Park JY (2005) Alpha-lipoic acid prevents endothelial dysfunction in obese rats via activation of AMP-activated protein kinase. Arterioscler Thromb Vasc Biol 25:2488–2494. doi:10.1161/01.ATV.0000190667.33224.4c

    Article  CAS  PubMed  Google Scholar 

  30. Lumeng CN, Bodzin JL, Saltiel AR (2007) Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest 117:175–184. doi:10.1172/JCI29881

    Article  CAS  PubMed  Google Scholar 

  31. Maxeiner H, Husemann J, Thomas CA, Loike JD, El KJ, Silverstein SC (1998) Complementary roles for scavenger receptor A and CD36 of human monocyte-derived macrophages in adhesion to surfaces coated with oxidized low-density lipoproteins and in secretion of H2O2. J Exp Med 188:2257–2265. doi:10.1084/jem.188.12.2257

    Article  CAS  PubMed  Google Scholar 

  32. Mokdad AH, Serdula MK, Dietz WH, Bowman BA, Marks JS, Koplan JP (1999) The spread of the obesity epidemic in the United States, 1991–1998. JAMA 282:1519–1522. doi:10.1001/jama.282.16.1519

    Article  CAS  PubMed  Google Scholar 

  33. Neels JG, Olefsky JM (2006) Inflamed fat: what starts the fire? J Clin Invest 116:33–35. doi:10.1172/JCI27280

    Article  CAS  PubMed  Google Scholar 

  34. Nguyen MT, Favelyukis S, Nguyen AK, Reichart D, Scott PA, Jenn A, Liu-Bryan R, Glass CK, Neels JG, Olefsky JM (2007) A subpopulation of macrophages infiltrates hypertrophic adipose tissue and is activated by free fatty acids via Toll-like receptors 2 and 4 and JNK-dependent pathways. J Biol Chem 282:35279–35292. doi:10.1074/jbc.M706762200

    Article  CAS  PubMed  Google Scholar 

  35. Prieur X, Roszer T, Ricote M (2010) Lipotoxicity in macrophages: evidence from diseases associated with the metabolic syndrome. Biochim Biophys Acta 1801:327–337. doi:10.1016/j.bbalip.2009.09.017

    CAS  PubMed  Google Scholar 

  36. Sag D, Carling D, Stout RD, Suttles J (2008) Adenosine 5’-monophosphate-activated protein kinase promotes macrophage polarization to an anti-inflammatory functional phenotype. J Immunol 181:8633–8641

    CAS  PubMed  Google Scholar 

  37. Santos EL, de Picoli SK, da Silva ED, Batista EC, Martins PJ, D’Almeida V, Pesquero JB (2009) Long term treatment with ACE inhibitor enalapril decreases body weight gain and increases life span in rats. Biochem Pharmacol 78:951–958. doi:10.1016/j.bcp.2009.06.018

    Article  CAS  PubMed  Google Scholar 

  38. Sarzani R, Salvi F, Dessi-Fulgheri P, Rappelli A (2008) Renin-angiotensin system, natriuretic peptides, obesity, metabolic syndrome, and hypertension: an integrated view in humans. J Hypertens 26:831–843. doi:10.1097/HJH.0b013e3282f624a0

    Article  CAS  PubMed  Google Scholar 

  39. Schaper W (2009) Collateral circulation: past and present. Basic Res Cardiol 104:5–21. doi:10.1007/s00395-008-0760-x

    Article  CAS  PubMed  Google Scholar 

  40. Sengenes C, Lolmede K, Zakaroff-Girard A, Busse R, Bouloumie A (2005) Preadipocytes in the human subcutaneous adipose tissue display distinct features from the adult mesenchymal and hematopoietic stem cells. J Cell Physiol 205:114–122. doi:10.1002/jcp.20381

    Article  CAS  PubMed  Google Scholar 

  41. Shen XZ, Li P, Weiss D, Fuchs S, Xiao HD, Adams JA, Williams IR, Capecchi MR, Taylor WR, Bernstein KE (2007) Mice with enhanced macrophage angiotensin-converting enzyme are resistant to melanoma. Am J Pathol 170:2122–2134. doi:10.2353/ajpath.2007.061205

    Article  CAS  PubMed  Google Scholar 

  42. Shen XZ, Lukacher AE, Billet S, Williams IR, Bernstein KE (2008) Expression of angiotensin-converting enzyme changes major histocompatibility complex class I peptide presentation by modifying C termini of peptide precursors. J Biol Chem 283:9957–9965. doi:10.1074/jbc.M709574200

    Article  CAS  PubMed  Google Scholar 

  43. Viinikainen A, Nyman T, Fyhrquist F, Saijonmaa O (2002) Downregulation of angiotensin converting enzyme by TNF-α in differentiating human macrophages. Cytokine 18:304–310. doi:10.1006/cyto.2002.1047

    Article  CAS  PubMed  Google Scholar 

  44. Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW Jr (2003) Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 112:1796–1808. doi:10.1172/JCI19246

    CAS  PubMed  Google Scholar 

  45. Weisinger RS, Stanley TK, Begg DP, Weisinger HS, Spark KJ, Jois M (2009) Angiotensin converting enzyme inhibition lowers body weight and improves glucose tolerance in C57BL/6 J mice maintained on a high fat diet. Physiol Behav 98:192–197. doi:10.1016/j.physbeh.2009.05.009

    Article  CAS  PubMed  Google Scholar 

  46. Xu H, Barnes GT, Yang Q, Tan G, Yang D, Chou CJ, Sole J, Nichols A, Ross JS, Tartaglia LA, Chen H (2003) Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest 112:1821–1830. doi:10.1172/JCI19451

    CAS  PubMed  Google Scholar 

  47. Yvan-Charvet L, Even P, Lamande N, Ferre P, Quignard-Boulange A (2006) Prevention of adipose tissue depletion during food deprivation in angiotensin type 2 receptor-deficient mice. Endocrinology 147:5078–5086. doi:10.1210/en.2006-0754

    Article  CAS  PubMed  Google Scholar 

  48. Zhang C (2008) The role of inflammatory cytokines in endothelial dysfunction. Basic Res Cardiol 103:398–406. doi:10.1007/s00395-008-0733-0

    Article  CAS  PubMed  Google Scholar 

  49. Zhang C, Wu J, Xu X, Potter BJ, Gao X (2010) Direct relationship between levels of TNF-α expression and endothelial dysfunction in reperfusion injury. Basic Res Cardiol 105:453–464. doi:10.1007/s00395-010-0083-6

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are indebted to Marie von Reutern and Isabel Winter for expert technical assistance. The experimental work described in this manuscript was supported by the Deutsche Forschungsgemeinschaft (FL 364/2-2, SFB 834/A5 and Exzellenzcluster 147 “Cardio-Pulmonary Systems”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karin Kohlstedt.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 32 kb)

Supplementary material 2 (PPT 3800 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kohlstedt, K., Trouvain, C., Namgaladze, D. et al. Adipocyte-derived lipids increase angiotensin-converting enzyme (ACE) expression and modulate macrophage phenotype. Basic Res Cardiol 106, 205–215 (2011). https://doi.org/10.1007/s00395-010-0137-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00395-010-0137-9

Keywords

Navigation