Skip to main content

Advertisement

Log in

Depressed expression of MuRF1 and MAFbx in areas remote of recent myocardial infarction: a mechanism contributing to myocardial remodeling?

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Ventricular remodeling following myocardial infarction (MI) includes myocardial hypertrophy, a process requiring increased protein synthesis and sarcomere assembly. The anti-hypertrophic effect of MuRF1/MafBx, both muscle-specific E3-ubiquitin ligases, has been demonstrated in animal experiments and in cultured cardiomyocytes. We assessed MuRF1/MAFbx expression in myocardium remote of recently (<2 weeks) infarcted regions (MI), compared with patients undergoing coronary artery bypass surgery, with normal systolic function and without previous infarction (control or Con). Left ventricular myocardial biopsies were obtained from the contralateral normal zone in MI (n = 14) patients and from the Con (n = 12) group. MuRF-1/MAFbx expression was assessed using RT-PCR and Western blot (WB). In addition, the myocardial expression of TNF-α was measured (RT-PCR) and troponin I, β-myosin and phosphorylated Akt/Akt (pAkt/Akt) were quantified (WB). MuRF1 and MAFbx expression (mRNA and protein level) were significantly reduced in biopsies from MI patients. TNF-α was significantly higher in MI and exhibited a negative correlation with MuRF1 and MAFbx. The expression of troponin I and cardiomyocyte size were increased in MI in comparison to Con, whereas β-myosin expression was not altered. When compared with Con, pAkt/Akt was elevated. The results of the present study suggest that the atrogenes MuRF1/MAFbx are involved in regulating the hypertrophic response, characteristic of the early post-infarction remodeling phase. Reduced expression of MuRF1 and MAFbx in the myocardium might permit hypertrophy, which is supported by the elevation of troponin I. A regulatory role of TNF-α needs to be confirmed in further experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Abbate A, Biondi-Zoccai GG, Bussani R, Dobrina A, Camilot D, Feroce F, Rossiello R, Baldi F, Silvestri F, Biasucci LM, Baldi A (2003) Increased myocardial apoptosis in patients with unfavorable left ventricular remodeling and early symptomatic post-infarction heart failure. J Am Coll Cardiol 41:753–760

    Article  PubMed  Google Scholar 

  2. Adams V, Linke A, Gielen S, Erbs S, Hambrecht R, Schuler G (2008) Modulation of Murf-1 and MAFbx expression in the myocardium by physical exercise training. Eur J Cardiovasc Prev Rehabil 15:293–299

    Article  PubMed  Google Scholar 

  3. Adams V, Linke A, Wisloff U, Doring C, Erbs S, Krankel N, Witt CC, Labeit S, Muller-Werdan U, Schuler G, Hambrecht R (2007) Myocardial expression of Murf-1 and MAFbx after induction of chronic heart failure: effect on myocardial contractility. Cardiovasc Res 73:120–129

    Article  CAS  PubMed  Google Scholar 

  4. Anversa P, Olivetti G, Capasso JM (1991) Cellular basis of ventricular remodeling after myocardial infarction. Am J Cardiol 68:7D–16D

    Article  CAS  PubMed  Google Scholar 

  5. Anversa P, Olivetti G, Li P, Herman MV, Capasso JM (1993) Myocardial infarction, cardiac anatomy and ventricular loading. Cardioscience 4:55–62

    CAS  PubMed  Google Scholar 

  6. Arya R, Kedar V, Hwang JR, McDonough H, Li HH, Taylor J, Patterson C (2004) Muscle ring finger protein-1 inhibits PKC{epsilon} activation and prevents cardiomyocyte hypertrophy. J Cell Biol 167:1147–1159

    Article  CAS  PubMed  Google Scholar 

  7. Centner T, Yano J, Kimura E, McElhinny AS, Pelin K, Witt CC, Bang ML, Trombitas K, Granzier H, Gregorio CC, Sorimachi H, Labeit S (2001) Identification of muscle specific ring finger proteins as potential regulators of the titin kinase domain. J Mol Biol 306:717–726

    Article  CAS  PubMed  Google Scholar 

  8. Condorelli G, Morisco C, Latronico MV, Claudio PP, Dent P, Tsichlis P, Frati G, Drusco A, Croce CM, Napoli C (2002) TNF-alpha signal transduction in rat neonatal cardiac myocytes: definition of pathways generating from the TNF-alpha receptor. FASEB J 16:1732–1737

    Article  CAS  PubMed  Google Scholar 

  9. Depre C, Wang Q, Yan L, Hedhli N, Peter P, Chen L, Hong C, Hittinger L, Ghaleh B, Sadoshima J, Vatner DE, Vatner SF, Madura K (2006) Activation of the cardiac proteasome during pressure overload promotes ventricular hypertrophy. Circulation 114:1821–1828

    Article  CAS  PubMed  Google Scholar 

  10. Dimmeler S, Assmus B, Hermann C, Haendeler J, Zeiher A (1998) Fluid shear stress stimulates phosphorylation of Akt in human endothelial cells. Circ Res 83:334–341

    CAS  PubMed  Google Scholar 

  11. Fang CX, Dong F, Thomas DP, Ma H, He L, Ren J (2008) Hypertrophic cardiomyopathy in high-fat diet-induced obesity: role of suppression of forkhead transcription factor and atrophy gene transcription. Am J Physiol Heart Circ Physiol 295:H1206–H1215

    Article  CAS  PubMed  Google Scholar 

  12. Fielitz J, Kim MS, Shelton JM, Latif S, Spencer JA, Glass DJ, Richardson JA, Bassel-Duby R, Olson EN (2007) Myosin accumulation and striated muscle myopathy result from the loss of muscle RING finger 1 and 3. J Clin Invest 117:2486–2495

    Article  CAS  PubMed  Google Scholar 

  13. Fielitz J, van Rooij E, Spencer JA, Shelton JM, Latif S, van der Nagel R, Bezprozvannaya S, de Windt L, Richardson JA, Bassel-Duby R, Olson EN (2007) Loss of muscle-specific RING-finger 3 predisposes the heart to cardiac rupture after myocardial infarction. Proc Natl Acad Sci USA 104:4377–4382

    Article  CAS  PubMed  Google Scholar 

  14. Glass DJ (2005) Skeletal muscle hypertrophy and atrophy signaling pathways. Int J Biochem Cell Biol 37:1974–1984

    CAS  PubMed  Google Scholar 

  15. Hiraoka E, Kawashima S, Takahashi T, Rikitake Y, Kitamura T, Ogawa W, Yokoyama M (2001) TNF-alpha induces protein synthesis through PI3-kinase-Akt/PKB pathway in cardiac myocytes. Am J Physiol Heart Circ Physiol 280:H1861–H1868

    CAS  PubMed  Google Scholar 

  16. Houser SR, Margulies KB (2003) Is depressed myocyte contractility centrally involved in heart failure? Circ Res 92:350–358

    Article  CAS  PubMed  Google Scholar 

  17. Irwin MW, Mak S, Mann DL, Qu R, Penninger JM, Yan A, Dawood F, Wen W, Shou Z, Liu P (1999) Tissue expression and immunolocalization of tumor necrosis factor-α in postinfarction dysfunctional myocardium. Circulation 99:1492–1498

    CAS  PubMed  Google Scholar 

  18. Kedar V, McDonough H, Arya R, Li HH, Rockman HA, Patterson C (2004) Muscle-specific RING finger 1 is a bona fide ubiquitin ligase that degrades cardiac troponin I. Proc Natl Acad Sci USA 101:18135–18140

    Article  CAS  PubMed  Google Scholar 

  19. Kubota T, McTiernan CF, Frye CS, Slawson SE, Lemster BH, Koretsky AP, Demetris AJ, Feldman AM (1997) Dilated cardiomyopathy in transgenic mice with cardiac-specific overexpression of tumor necrosis factor-alpha. Circ Res 81:627–635

    CAS  PubMed  Google Scholar 

  20. Lauten A, Majos E, Mühlich A, Wahlers T, Weider S, Fischer JH, Figulla HR, Bloch W (2009) Ischemia-reperfusion injury activates early extracellular matrix processing and expression of endostatin in the heart with differential effects of temperature. Basic Res Cardiol 104:559–569

    Article  CAS  PubMed  Google Scholar 

  21. Li HH, Kedar V, Zhang C, McDonough H, Arya R, Wang DZ, Patterson C (2004) Atrogin-1/muscle atrophy F-box inhibits calcineurin-dependent cardiac hypertrophy by participating in an SCF ubiquitin ligase complex. J Clin Invest 114:1058–1071

    CAS  PubMed  Google Scholar 

  22. Li HH, Willis MS, Lockyer P, Miller N, McDonough H, Glass DJ, Patterson C (2007) Atrogin-1 inhibits Akt-dependent cardiac hypertrophy in mice via ubiquitin-dependent coactivation of forkhead proteins. J Clin Invest 117:3211–3223

    Article  CAS  PubMed  Google Scholar 

  23. Mann DL (2002) Inflammatory mediators and the failing heart: past, present, and the foreseeable future. Circ Res 91:988–998

    Article  CAS  PubMed  Google Scholar 

  24. Mann DL, Bristow MR (2005) Mechanisms and models in heart failure: the biomechanical model and beyond. Circulation 111:2837–2849

    Article  PubMed  Google Scholar 

  25. Patterson C, Ike C, PWt Willis, Stouffer GA, Willis MS (2007) The bitter end: the ubiquitin–proteasome system and cardiac dysfunction. Circulation 115:1456–1463

    Article  CAS  PubMed  Google Scholar 

  26. Sack MN, Smith RM, Opie LH (2000) Tumor necrosis factor in myocardial hypertrophy and ischaemia: an anti-apoptotic perspective. Cardiovasc Res 45:688–695

    Article  CAS  PubMed  Google Scholar 

  27. Sack M (2002) Tumor necrosis factor-alpha in cardiovascular biology and the potential role for anti-tumor necrosis factor-alpha therapy in heart disease. Pharmacol Ther 94:23–35

    Article  Google Scholar 

  28. Satoh M, Nakamura M, Akatsu T, Shimoda Y, Segawa I, Hiramori K (2006) C-reactive protein co-expresses with tumor necrosis factor-alpha in the myocardium in human dilated cardiomyopathy. Eur J Heart Fail 7:748–754

    Article  Google Scholar 

  29. Schulz R, Heusch G (2009) Tumor necrosis factor-alpha and its receptors 1 and 2: Yin and Yang in myocardial infarction? Circulation 119:1355–1357

    Article  PubMed  Google Scholar 

  30. Schulze PC, Fang J, Kassik KA, Gannon J, Cupesi M, MacGillivray C, Lee RT, Rosenthal N (2005) Transgenic overexpression of locally acting insulin-like growth factor-1 inhibits ubiquitin-mediated muscle atrophy in chronic left-ventricular dysfunction. Circ Res 97:418–426

    Article  CAS  PubMed  Google Scholar 

  31. Skurk C, Izumiya Y, Maatz H, Razeghi P, Shiojima I, Sandri M, Sato K, Zeng L, Schiekofer S, Pimentel D, Lecker S, Taegtmeyer H, Goldberg AL, Walsh K (2005) The FOXO3a transcription factor regulates cardiac myocyte size downstream of AKT signaling. J Biol Chem 280:20814–20823

    Article  CAS  PubMed  Google Scholar 

  32. Skyschally A, Gres P, Hoffmann S, Haude M, Erbel R, Schulz R, Heusch G (2007) Bidirectional role of tumor necrosis factor-alpha in coronary microembolization: progressive contractile dysfunction versus delayed protection against infarction. Circ Res 100:140–146

    Article  CAS  PubMed  Google Scholar 

  33. Vanderheyden M, Mullens W, Delrue L, Goethals M, de Bruyne B, Wijns W, Geelen P, Verstreken S, Wellens F, Bartunek J (2008) Myocardial gene expression in heart failure patients treated with cardiac resynchronization therapy responders versus nonresponders. J Am Coll Cardiol 51:129–136

    Article  CAS  PubMed  Google Scholar 

  34. Wallace CK, Stetson SJ, Kucuker SA, Becker KA, Farmer JA, McRee SC, Koerner MM, Noon GP, Torre-Amione G (2005) Simvastatin decreases myocardial tumor necrosis factor alpha content in heart transplant recipients. J Heart Lung Transplant 24:46–51

    Article  PubMed  Google Scholar 

  35. Wang X, Robbins J (2006) Heart failure and protein quality control. Circ Res 99:1315–1328

    Article  CAS  PubMed  Google Scholar 

  36. Willis MS, Rojas M, Li L, Selzman CH, Tang RH, Stansfield WE, Rodriguez JE, Glass D, Patterson C (2009) Muscle ring finger-1 (MuRF1) mediates cardiac atrophy in vivo. Am J Physiol Heart Circ Physiol 296:H997–H1006

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

We would like to thank Nicole Urban and Tina Fischer for excellent technical assistance; and Siegfried Labeit for providing the MuRF1 specific antibody. This work was supported by Fonds voor Wetenschappelijk onderzoek (FWO)-Flanders (VC, clinical postdoctoral fellow) and by the Deutsche Forschungsgemeinschaft (LI946/3-1).

Conflict of interest statement

None declared.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viviane M. Conraads .

Rights and permissions

Reprints and permissions

About this article

Cite this article

Conraads , V.M., Vrints, C.J., Rodrigus, I.E. et al. Depressed expression of MuRF1 and MAFbx in areas remote of recent myocardial infarction: a mechanism contributing to myocardial remodeling? . Basic Res Cardiol 105, 219–226 (2010). https://doi.org/10.1007/s00395-009-0068-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00395-009-0068-5

Keywords

Navigation