Skip to main content
Log in

Bone marrow-derived cells are not involved in reendothelialized endothelium as endothelial cells after simple endothelial denudation in mice

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

It has been shown that bone marrow (BM)-derived cells are involved in repaired endothelium induced by a model such as neointima-produced wire injury in mice. This has not been shown in a less invasive model that results in simple reendothelialization. A new wire-induced simple endothelial denudation model of the common carotid artery (CCA) of mice, which did not form neointima at 14 days after the operation, was established. At 7 days after operation, the CCAs were reendothelialized from the aortic arch and the carotid bifurcation but not completely, shown by whole-mount CD31 immunohistochemical staining. Scanning electron microscopy revealed that unendothelialized area was covered with platelets. To determine the involvement of BM-derived cells in the repaired endothelium, the wild-type (WT) C57BL/6 mice, in which BM cells derived from strain-matched green fluorescent protein (GFP)-transgenic mice were transplanted, were operated upon. As a result, there was no GFP-positive endothelial cell (EC) in reendothelialized endothelium, otherwise GFP-positive ‘dendritic’-like cells were recruited under the repaired endothelial layer. Administration of recombinant human erythropoietin [1,000 IU/(kg day) at 0–3 days after operation subcutaneously], which has been shown to increase endothelial progenitor cells in peripheral blood, also could not recruit BM-derived cells as ECs in BM-transplanted mice despite accelerating reendothelialization in WT mice [%reendothelialized area of the administrated group 78.0 ± 9.4% (mean ± SD) vs. the control group 63.0 ± 4.4%, P < 0.05]. These results suggest that BM-derived cells may not be involved in reendothelialization as ECs after simple endothelial denudation in mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Aicher A, Rentsch M, Sasaki K, Ellwart JW, Fändrich F, Siebert R, Cooke JP, Dimmerler S, Heeschen C (2007) Nonbone marrow-derived circulating progenitor cells contribute to postnatal neovascularization following tissue ischemia. Circ Res 100:581–589

    Article  PubMed  CAS  Google Scholar 

  2. Anagnostou A, Lee ES, Kessimian N, Levinson R, Steiner M (1990) Erythropoietin has a mitogenic and positive chemotactic effect on endothelial cells. Proc Natl Acad Sci USA 87:5978–5982

    Article  PubMed  CAS  Google Scholar 

  3. Andreeva ER, Pugach IM, Gordon D, Orekhov AN (1998) Continuous subendothelial network formed by pericyte-like cells in human vascular bed. Tissue Cell 30:127–135

    Article  PubMed  CAS  Google Scholar 

  4. Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, Witzenbichler B, Schatteman G, Isner JM (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275:964–967

    Article  PubMed  CAS  Google Scholar 

  5. Bahlmann FH, De Groot K, Spandau JM, Landry AL, Hertel B, Duckert T, Boehm SM, Menne J, Haller H, Fliser D (2004) Erythropoietin regulates endothelial progenitor cells. Blood 103:921–926

    Article  PubMed  CAS  Google Scholar 

  6. Bobryshev YV, Lord RS (1995) S-100 positive cells in human arterial intima and atherosclerotic lesions. Cardiovasc Res 29:689–696

    PubMed  CAS  Google Scholar 

  7. De Palma M, Venneri MA, Roca C, Naldini L (2003) Targeting exogenous genes to tumor angiogenesis by transplantation of genetically modified hematopoietic stem cells. Nat Med 9:789–795

    Article  PubMed  Google Scholar 

  8. Dernbach E, Randriamboavonjy V, Fleming I, Zeiher AM, Dimmeler S, Urbich C (2008) Impaired interaction of platelets with endothelial progenitor cells in patients with cardiovascular risk factors. Basic Res Cardiol 103:572–581

    Article  PubMed  Google Scholar 

  9. Fujiyama S, Amano K, Yoshida M, Nishiwaki Y, Nozawa Y, Jin D, Takai S, Miyazaki M, Egashira K, Imada T, Iwasaka T, Matsubara H (2003) Bone marrow monocyte linage cells adhere on injured endothelium in a monocyte chemoattractant protein-1-dependent manner and accelerate reendothelialization as endothelial progenitor cells. Circ Res 93:980–989

    Article  PubMed  CAS  Google Scholar 

  10. Heeschen C, Aicher A, Lehmann R, Fichtlscherer S, Vasa M, Urbich C, Mildner-Rihm C, Martin H, Zeiher AM, Dimmeler S (2003) Erythropoietin is a potent physiologic stimulus for endothelial progenitor cell mobilization. Blood 102:1340–1346

    Article  PubMed  CAS  Google Scholar 

  11. Hillebrands JL, Klatter FA, van Dijk WD, Rozing J (2002) Bone marrow does not contribute substantially to endothelial-cell replacement in transplant atherosclerosis (letter). Nat Med 8:194–195

    Article  PubMed  Google Scholar 

  12. Ibrahim J, Miyashiro JK, Berk BC (2003) Shear stress is differentially regulated among inbred rat strains. Circ Res 92:1001–1009

    Article  PubMed  CAS  Google Scholar 

  13. Isner JM, Asahara T (1999) Angiogenesis and vasculogenesis as therapeutic strategies for postnatal neovascularization (review). J Clin Invest 103:1231–1236

    Article  PubMed  CAS  Google Scholar 

  14. Jongstra-Bilen J, Haidari M, Zhu SN, Chen M, Guha D, Cybulsky MI (2006) Low-grade chronic inflammation in regions of the normal mouse arterial intima predisposed to atherosclerosis. J Exp Med 203:2073–2083

    Article  PubMed  CAS  Google Scholar 

  15. Kleinbongard P, Weber AA (2008) Impaired interaction between platelets and endothelial progenitor cells in diabetic patients. Basic Res Cardiol 103:569–571

    Article  PubMed  Google Scholar 

  16. Korshunov VA, Berk BC (2003) Flow-induced vascular remodeling in the mouse: a model for carotid initma-media thickening. Arterioscler Thromb Vasc Biol 23:2185–2191

    Article  PubMed  CAS  Google Scholar 

  17. Langer H, May AE, Daub K, Heinzmann U, Lang P, Schumm M, Vestweber D, Massberg S, Schönberger T, Pfisterer I, Hatzopoulos AK, Gawaz M (2006) Adherent platelets recruit and induce differentiation of murine embryonic endothelial progenitor cells to mature endothelial cells in vitro. Circ Res 98:e2–e10

    Article  PubMed  CAS  Google Scholar 

  18. Laufs U, Werner N, Link A, Endres M, Wassmann S, Jürgens K, Miche E, Böhm M, Nicknig G (2004) Physical training increases endothelial progenitor cells, inhibits neointima formation, and enhances angiogenesis. Circulation 109:220–226

    Article  PubMed  CAS  Google Scholar 

  19. Lindner V, Fingerle J, Reidy MA (1993) Mouse model of arterial injury. Circ Res 73:792–796

    PubMed  CAS  Google Scholar 

  20. Millong G, Niederegger H, Rabl W, Hochleitner BW, Hoefer D, Rmani N, Wick G (2001) Network of vascular-associated dendritic cells in intima of healthy young individuals. Arterioscler Thromb Vasc Biol 21:503–508

    Google Scholar 

  21. Morikawa S, Baluk P, Kaidoh T, Haskell A, Jain RK, McDonald DM (2002) Abnormalities in pericytes on blood vessels and endothelial sprouts in tumors. Am J Pathol 160:985–1000

    PubMed  Google Scholar 

  22. Moulton KS, Vakili K, Zurakowski D, Soliman M, Butterfield C, Sylvin E, Lo KM, Gillies S, Javaherian K, Folkman J (2003) Inhibition of plaque neovascularization reduces macrophage accumulation and progression of advanced atherosclerosis. Proc Natl Acad Sci USA 100:4736–4741

    Article  PubMed  CAS  Google Scholar 

  23. Okabe M, Ikawa M, Kominami K, Nakanishi T, Nishimune Y (1997) ’Green mice’ as a source of ubiquitous green cells. FEBS Lett 407:313–319

    Article  PubMed  CAS  Google Scholar 

  24. O’Neill TJ, Wamhoff BR, Owens GK, Skalak TC (2005) Mobilization of bone marrow-derived cells enhances the angiogenic response to hypoxia without transdifferentiation into endothelial cells. Circ Res 97:1027–1035

    Article  PubMed  Google Scholar 

  25. Prescott MF, Müller KR (1983) Endothelial regeneration in hypertensive and genetically hypercholesterolemic rats. Arteriosclerosis 3:206–214

    PubMed  CAS  Google Scholar 

  26. Rafii S, Lyden D (2003) Therapeutic stem and progenitor cell transplantation for organ vascularization and regeneration (review). Nat Med 9:702–712

    Article  PubMed  CAS  Google Scholar 

  27. Ramsay MM, Walker LN, Bowyer DE (1982) Narrow superficial injury of rabbit aortic endothelium. The healing process as obserced by scanning electron microscopy. Atherosclerosis 43:233–243

    Article  PubMed  CAS  Google Scholar 

  28. Strehlow K, Werner N, Berweiler J, Link A, Dirnagl U, Priller J, Laufs K, Ghaeni L, Milosevic M, Böhm M, Nickenig G (2003) Estrogen increases bone marrow-derived endothelial progenitor cells production and diminishes neointima formation. Circulation 107:3059–3065

    Article  PubMed  CAS  Google Scholar 

  29. Urao N, Okigaki M, Yamada H, Adachi Y, Matsuno K, Matsui A, Matsunaga S, Tateishi K, Nomura T, Takahashi T, Tatsumi T, Matsubara H (2006) Erythropoietin-mobilized endothelial progenitors enhance reendothelialization via Akt-endothelial nitric oxide synthase activation and prevent neointimal hyperplasia. Circ Res 98:1405–1413

    Article  PubMed  CAS  Google Scholar 

  30. Walter DH, Rittig K, Bahlmann FH, Kirchmair R, Silver M, Murayama T, Nishimura H, Losordo DW, Asahara T, Isner JM (2002) Statin therapy accelerates reendothelialization: a novel effect involving mobilization and incorporation of bone marrow-derived endothelial progenitor cells. Circulation 105:3017–3024

    Article  PubMed  CAS  Google Scholar 

  31. Yamada T, Kondo T, Numaguchi Y, Tsuzuki M, Matsubara T, Manabe I, Sata M, Nagai R, Murohara T (2007) Angiotensin II receptor blocker inhibits neointimal hyperplasia through regulation of smooth muscle-like progenitor cells. Arterioscler Thromb Vasc Biol 27:2363–2369

    Article  PubMed  CAS  Google Scholar 

  32. Zeiglhoeffer T, Fernandez B, Kostin S, Heil M, Voswinckel R, Helisch A, Schaper W (2004) Bone marrow-derived cells do not incorporate into the adult growing vasculature. Circ Res 94:230–238

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michitaka Tsuzuki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsuzuki, M. Bone marrow-derived cells are not involved in reendothelialized endothelium as endothelial cells after simple endothelial denudation in mice. Basic Res Cardiol 104, 601–611 (2009). https://doi.org/10.1007/s00395-009-0021-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00395-009-0021-7

Keywords

Navigation