Skip to main content

Advertisement

Log in

Atrial natriuretic peptide administered just prior to reperfusion limits infarction in rabbit hearts

  • ORIGINAL CONTRIBUTION
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

We investigated whether atrial natriuretic peptide (ANP) given just prior to reperfusion reduces infarction in rabbit hearts and whether protection is related to activation of protein kinase G (PKG). Isolated rabbit hearts were subjected to a 30-min period of regional ischemia; treated hearts received a 20-min infusion of ANP (0.1 μM) starting 5 min before 2 h of reperfusion. ANP infusion decreased infarction from 31.5±2.4% of the risk zone in untreated hearts to 12.5±2.0% (P<0.001). To explore mechanisms of protection ischemic hearts were treated simultaneously with ANP and isatin, a blocker of the natriuretic peptide receptor, shortly before reperfusion. ANP’s protective effect was aborted (36.8±2.9% infarction). There is no acceptable blocker of protein kinase G that can be used in intact organs. However, 8-(4-chlorophenylthio)-guanosine 3′, 5′-cyclic monophosphate (10 μM), a cell-permeable cGMP analog that directly activates PKG, was infused from 5 min before to 15 min after reperfusion. The PKG activator mimicked ANP’s protection with only 18.2±3.6% infarction (P<0.001). 5-Hydroxyde-canoate (5-HD), a putative mitochondrial KATP channel (mKATP) inhibitor, abrogated ANP’s protection (34.4±2.6% infarction). Unexpectedly, 1H-[1,2,4]oxadiazole- [4,3-a]quinoxalin-1-one (ODQ), a blocker of soluble guanylyl cyclase also prevented ANP’s infarct-sparing effect. It is unclear whether this observation implicated participation of soluble guanylyl cyclase in the mechanism or simply a lack of selectivity of ODQ. Finally the reperfusion injury salvage kinases (RISK), phosphatidylinositol 3-kinase and extracellular signal-regulated kinase, were implicated in ANP’s mechanism since either wortmannin or PD98059 infused at reperfusion prevented ANP’s infarct-sparing effect. ANP administered just prior to reperfusion protects hearts against infarction, likely by activation of PKG, opening of mKATP, and stimulation of downstream kinases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ahluwalia A, MacAllister RJ, Hobbs AJ (2004) Vascular actions of natriuretic peptides: cyclic GMP-dependent and -independent mechanisms. Basic Res Cardiol 99:83–89

    Article  PubMed  CAS  Google Scholar 

  2. Airhart N, Yang Y-F, Roberts CT Jr, Silberbach M (2003) Atrial natriuretic peptide induces natriuretic peptide receptor-cGMP-dependent protein kinase interaction. J Biol Chem 278:38693–38698

    Article  PubMed  CAS  Google Scholar 

  3. Aizawa T, Wei H, Miano JM, Abe J-i, Berk BC, Yan C (2003) Role of phosphodiesterase 3 in NO/cGMP-mediated antiinflammatory effects in vascular smooth muscle cells. Circ Res 93:406–413

    Article  PubMed  CAS  Google Scholar 

  4. Baxter GF (2004) The natriuretic peptides: an introduction. Basic Res Cardiol 99:71–75

    Article  PubMed  CAS  Google Scholar 

  5. Baxter GF, Ebrahim Z, Yellon DM (2000) Amp579, an A1/A2A agonist, limits infarct size at reperfusion via a p42/p44 mapk-dependent pathway. Circulation 102 (Suppl II): II-212 (Abstract)

    Google Scholar 

  6. Baxter GF, Mocanu MM, Brar BK, Latchman DS, Yellon DM (2001) Cardioprotective effects of transforming growth factor-β1 during early reoxygenation or reperfusion are mediated by p42/p44 MAPK. J Cardiovasc Pharmacol 38:930–939

    Article  PubMed  CAS  Google Scholar 

  7. Bell RM, Yellon DM (2003) Bradykinin limits infarction when administered as an adjunct to reperfusion in mouse heart: the role of PI3K, Akt and eNOS. J Mol Cell Cardiol 35:185–193

    Article  PubMed  CAS  Google Scholar 

  8. Clerico A, Emdin M (2004) Diagnostic accuracy and prognostic relevance of the measurement of cardiac natriuretic peptides: a review. Clin Chem 50:33–50

    Article  PubMed  CAS  Google Scholar 

  9. Cohen MV, Yang X-M, Liu GS, Heusch G, Downey JM (2001) Acetylcholine, bradykinin, opioids, and phenylephrine, but not adenosine, trigger preconditioning by generating free radicals and opening mitochondrial KATP channels. Circ Res 89:273–278

    PubMed  CAS  Google Scholar 

  10. D’Souza SP, Davis M, Baxter GF (2004) Autocrine and paracrine actions of natriuretic peptides in the heart. Pharmacol Ther 101:113–129

    Article  PubMed  CAS  Google Scholar 

  11. D’Souza SP, Yellon DM, Martin C, Schulz R, Heusch G, Onody A, Ferdinandy P, Baxter GF (2003) B-type natriuretic peptide limits infarct size in rat isolated hearts via KATP channel opening. Am J Physiol 284:H1592–H1600

    CAS  Google Scholar 

  12. Das M, Parker JE, Halestrap AP (2003) Matrix volume measurements challenge the existence of diazoxide/glibenclamide-sensitive KATP channels in rat mitochondria. J Physiol 547:893–902

    Article  PubMed  CAS  Google Scholar 

  13. de los Ángeles Costa M, Elesgaray R, Loria A, Balaszczuk AM, Arranz C (2004) Atrial natriuretic peptide influence on nitric oxide system in kidney and heart. Regul Pept 118:151–157

    Article  Google Scholar 

  14. Doust JA, Glasziou PP, Pietrzak E, Dobson AJ (2004) A systematic review of the diagnostic accuracy of natriuretic peptides for heart failure. Arch Intern Med 164:1978–1984

    Article  PubMed  CAS  Google Scholar 

  15. Erbay AR, Yilmaz MB, Balci M, Sabah I (2004) Atrial natriuretic peptide levels in adult patients before and after surgery for correction of atrial septal defects: relationship with atrial arrhythmias. Clin Sci 107:297–302

    Article  PubMed  CAS  Google Scholar 

  16. Franco V, Chen Y-F, Oparil S, Feng JA, Wang D, Hage F, Perry G (2004) Atrial natriuretic peptide dose-dependently inhibits pressure overload-induced cardiac remodeling. Hypertension 44:746–750

    Article  PubMed  CAS  Google Scholar 

  17. Garlid KD, Paucek P, Yarov-Yarovoy V, Murray HN, Darbenzio RB, D’Alonzo AJ, Lodge NJ, Smith MA, Grover GJ (1997) Cardioprotective effect of diazoxide and its interaction with mitochondrial ATP-sensitive K+ channels: possible mechanism of cardioprotection. Circ Res 81:1072–1082

    PubMed  CAS  Google Scholar 

  18. Garthwaite J, Southam E, Boulton CL, Nielsen EB, Schmidt K, Mayer B (1995) Potent and selective inhibitior of nitric oxide-sensitive guanylyl cyclase by 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one. Mol Pharmacol 48:184–188

    PubMed  CAS  Google Scholar 

  19. Gelpi RJ, Morales C, Cohen MV, Downey JM (2002) Xanthine oxidase contributes to preconditioning’s preservation of left ventricular developed pressure in isolated rat heart: developed pressure may not be an appropriate end-point for studies of preconditioning. Basic Res Cardiol 97:40–46

    Article  PubMed  CAS  Google Scholar 

  20. Glover V, Medvedev A, Sandler M (1995) Isatin is a potent endogenous antagonist of guanylate cyclase-coupled atrial natriuretic peptide receptors. Life Sci 57:2073–2079

    Article  PubMed  CAS  Google Scholar 

  21. Gross ER, Hsu AK, Gross GJ (2004) Opioid-induced cardioprotection occurs via glycogen synthase kinase β inhibition during reperfusion in intact rat hearts. Circ Res 94:960–966

    Article  PubMed  CAS  Google Scholar 

  22. Hanley PJ, Mickel M, Löffler M, Brandt U, Daut J (2002) KATP channel-independent targets of diazoxide and 5-hydroxydecanoate in the heart. J Physiol 542:735–741

    Article  PubMed  CAS  Google Scholar 

  23. Hausenloy DJ, Mocanu MM, Yellon DM (2004) Cross-talk between the survival kinases during early reperfusion: its contribution to ischemic preconditioning. Cardiovasc Res 63:305–312

    Article  PubMed  CAS  Google Scholar 

  24. Hausenloy DJ, Tsang A, Mocanu MM, Yellon DM (2005) Ischemic preconditioning protects by activating prosurvival kinases at reperfusion. Am J Physiol 288:H971–H976

    CAS  Google Scholar 

  25. Hausenloy DJ, Yellon DM (2004) New directions for protecting the heart against ischaemia-reperfusion injury: targeting the Reperfusion Injury Salvage Kinase (RISK)-pathway. Cardiovasc Res 61:448–460

    Article  PubMed  CAS  Google Scholar 

  26. Hayashi D, Kudoh S, Shiojima I, Zou Y, Harada K, Shimoyama M, Imai Y, Monzen K, Yamazaki T, Yazaki Y, Nagai R, Komuro I (2004) Atrial natriuretic peptide inhibits cardiomyocyte hypertrophy through mitogen-activated protein kinase phosphatase-1. Biochem Biophys Res Commun 322:310–319

    Article  PubMed  CAS  Google Scholar 

  27. Hayashi Y, Ohtani M, Sawa Y, Hiraishi T, Akedo H, Kobayashi Y, Matsuda H (2003) Synthetic human α-atrial natriuretic peptide improves the management of postoperative hypertension and renal dysfunction after the repair of abdominal aortic aneurysm. J Cardiovasc Pharmacol 42:636–641

    Article  PubMed  CAS  Google Scholar 

  28. Inserte J, Garcia-Dorado D, Agulló L, Paniagua A, Soler-Soler J (2000) Urodilatin limits acute reperfusion injury in the isolated rat heart. Cardiovasc Res 45:351–359

    Article  PubMed  CAS  Google Scholar 

  29. Jenkins DP, Pugsley WB, Yellon DM (1995) Ischaemic preconditioning in a model of global ischaemia: infarct size limitation, but no reduction of stunning. J Mol Cell Cardiol 27:1623–1632

    Article  PubMed  CAS  Google Scholar 

  30. Jonassen AK, Sack MN, Mjøs OD, Yellon DM (2001) Myocardial protection by insulin at reperfusion requires early administration and is mediated via Akt and p70s6 kinase cell-survival signaling. Circ Res 89:1191–1198

    PubMed  CAS  Google Scholar 

  31. Kasama S, Toyama T, Kumakura H, Takayama Y, Ishikawa T, Ichikawa S, Suzuki T, Kurabayashi M (2004) Effects of intravenous atrial natriuretic peptide on cardiac sympathetic nerve activity in patients with decompensated congestive heart failure. J Nucl Med 45:1108–1113

    PubMed  CAS  Google Scholar 

  32. Krieg T, Philipp S, Cui L, Dostmann WR, Downey JM, Cohen MV (2005) Peptide blockers of PKG inhibit ROS generation by acetylcholine and bradykinin in cardiomyocytes but fail to block protection in the whole heart. Am J Physiol 288:H1976–H1981

    CAS  Google Scholar 

  33. Kuhn M (2004) Molecular physiology of natriuretic peptide signalling. Basic Res Cardiol 99:76–82

    Article  PubMed  CAS  Google Scholar 

  34. Lai C-P, Egashira K, Tashiro H, Narabayashi H, Koyanagi S, Imaizumi T, Takeshita A (1993) Beneficial effects of atrial natriuretic peptide on exercise-induced myocardial ischemia in patients with stable effort angina pectoris. Circulation 87:144–151

    PubMed  CAS  Google Scholar 

  35. Liao Z, Brar BK, Cai Q, Stephanou A, O’Leary RM, Pennica D, Yellon DM, Latchman DS (2002) Cardiotrophin-1 (CT-1) can protect the adult heart from injury when added both prior to ischaemia and at reperfusion. Cardiovasc Res 53:902–910

    Article  PubMed  CAS  Google Scholar 

  36. Liu Y, Cohen MV, Downey JM (1994) Chelerythrine, a highly selective protein kinase C inhibitor, blocks the antiinfarct effect of ischemic preconditioning in rabbit hearts. Cardiovasc Drugs Ther 8:881–882

    Article  PubMed  CAS  Google Scholar 

  37. McLay JS, Chatterjee PK, Jardine AG, Hawksworth GM (1995) Atrial natriuretic factor modulates nitric oxide production: an ANF-C receptor-mediated effect. J Hypertens 13:625–630

    PubMed  CAS  Google Scholar 

  38. McLay JS, Chatterjee PK, Mistry SK, Weerakody RP, Jardine AG, McKay NG, Hawksworth GM (1995) Atrial natriuretic factor and angiotensin II stimulate nitric oxide release from human proximal tubular cells. Clin Sci 89:527–531

    PubMed  CAS  Google Scholar 

  39. Medvedev A, Sandler M, Glover V (1999) The influence of isatin on guanylyl cyclase of rat heart membranes. Eur J Pharmacol 384:239–241

    Article  PubMed  CAS  Google Scholar 

  40. National Research Council (1996) Guide for the Care and Use of Laboratory Animals 7th ed. National Academy Press, Washington, DC

    Google Scholar 

  41. Olesen S-P, Drejer J, Axelsson O, Moldt P, Bang L, Nielsen-Kudsk JE, Busse R, Mülsch A (1998) Characterization of NS 2028 as a specific inhibitor of soluble guanylyl cyclase. Br J Pharmacol 123:299–309

    Article  PubMed  CAS  Google Scholar 

  42. Olson LJ, Knych ET Jr, Herzig TC, Drewett JG (1997) Selective guanylyl cyclase inhibitor reverses nitric oxide-induced vasorelaxation. Hypertension 29:254–261

    PubMed  CAS  Google Scholar 

  43. Padilla F, Garcia-Dorado D, Agulló L, Barrabés JA, Inserte J, Escalona N, Meyer M, Mirabet M, Pina P, Soler-Soler J (2001) Intravenous administration of the natriuretic peptide urodilatin at low doses during coronary reperfusion limits infarct size in anesthetized pigs. Cardiovasc Res 51:592–600

    Article  PubMed  CAS  Google Scholar 

  44. Pain T, Yang X-M, Critz SD, Yue Y, Nakano A, Liu GS, Heusch G, Cohen MV, Downey JM (2000) Opening of mitochondrial KATP channels triggers the preconditioned state by generating free radicals. Circ Res 87:460–466

    PubMed  CAS  Google Scholar 

  45. Parsa CJ, Kim J, Riel RU, Pascal LS, Thompson RB, Petrofski JA, Matsumoto A, Stamler JS, Koch WJ (2004) Cardioprotective effects of erythropoietin in the reperfused ischemic heart: a potential role for cardiac fibroblasts. J Biol Chem 279:20655–20662

    Article  PubMed  CAS  Google Scholar 

  46. Parsa CJ, Matsumoto A, Kim J, Riel RU, Pascal LS, Walton GB, Thompson RB, Petrofski JA, Annex BH, Stamler JS, Koch WJ (2003) A novel protective effect of erythropoietin in the infarcted heart. J Clin Invest 112:999–1007

    Article  PubMed  CAS  Google Scholar 

  47. Qin Q, Yang X-M, Cui L, Critz SD, Cohen MV, Browner NC, Lincoln TM, Downey JM (2004) Exogenous NO triggers preconditioning via a cGMP- and mitoKATP-dependent mechanism. Am J Physiol 287:H712–H718

    CAS  Google Scholar 

  48. Sangawa K, Nakanishi K, Ishino K, Inoue M, Kawada M, Sano S (2004) Atrial natriuretic peptide protects against ischemia-reperfusion injury in the isolated rat heart. Ann Thorac Surg 77:233–237

    Article  PubMed  Google Scholar 

  49. Sausbier M, Schubert R, Voigt V, Hirneiss C, Pfeifer A, Korth M, Kleppisch T, Ruth P, Hofmann F (2000) Mechanisms of NO/cGMP-dependent vasorelaxation. Circ Res 87:825–830

    PubMed  CAS  Google Scholar 

  50. Schmidt HHHW, Lohmann SM, Walter U (1993) The nitric oxide and cGMP signal transduction system: regulation and mechanism of action. Biochim Biophys Acta 1178:153–175

    Article  PubMed  CAS  Google Scholar 

  51. Takagi G, Kiuchi K, Endo T, Yamamoto T, Sato N, Nejima J, Takano T (2000) α-Human atrial natriuretic peptide, caperitide, reduces infarct size but not arrhythmias after coronary occlusion/reperfusion in dogs. J Cardiovasc Pharmacol 36:22–30

    Article  PubMed  CAS  Google Scholar 

  52. Tapanainen JM, Lindgren KS, Mäkikallio TH, Vuolteenaho O, Leppäluoto J, Huikuri HV (2004) Natriuretic peptides as predictors of non-sudden and sudden cardiac death after aute myocardial infarction in the beta-blocking era. J Am Coll Cardiol 43:757–763

    Article  PubMed  CAS  Google Scholar 

  53. Tsuneyoshi H, Nishina T, Nomoto T, Kanemitsu H, Kawakami R, Unimonh O, Nishimura K, Komeda M (2004) Atrial natriuretic peptide helps prevent late remodeling after left ventricular aneurysm repair. Circulation 110 (Suppl II):II–174-II–179

    Google Scholar 

  54. Vandecasteele G, Verde I, Rücker-Martin C, Donzeau-Gouge P, Fischmeister R (2001) Cyclic GMP regulation of the L-type Ca2+ channel current in human atrial myocytes. J Physiol 533:329–340

    Article  PubMed  CAS  Google Scholar 

  55. Wen JF, Cui X, Jin JY, Kim SM, Kim SZ, Kim SH, Lee HS, Cho KW (2004) High and low gain switches for regulation of cAMP efflux concentration: distinct roles for particulate GC- and soluble GC-cGMP-PDE3 signaling in rabbit atria. Circ Res 94:936–943

    Article  PubMed  CAS  Google Scholar 

  56. Xu Z, Yang X-M, Cohen MV, Neumann T, Heusch G, Downey JM (2000) Limitation of infarct size in rabbit hearts by the novel adenosine receptor agonist AMP 579 administered at reperfusion. J Mol Cell Cardiol 32:2339–2347

    Article  PubMed  CAS  Google Scholar 

  57. Yang X-M, Krieg T, Cui L, Downey JM, Cohen MV (2004) NECA and bradykinin at reperfusion reduce infarction in rabbit hearts by signaling through PI3K, ERK, and NO. J Mol Cell Cardiol 36:411–421

    Article  PubMed  CAS  Google Scholar 

  58. Yang X-M, Philipp S, Downey JM, Cohen MV (2005) Postconditioning’s protection is not dependent on circulating blood factors or cells but involves adenosine receptors and requires PI3-kinase and guanylyl cyclase activation. Basic Res Cardiol 100:57–63

    Article  PubMed  CAS  Google Scholar 

  59. Yang X-M, Proctor JB, Cui L, Krieg T, Downey JM, Cohen MV (2004) Multiple, brief coronary occlusions during early reperfusion protect rabbit hearts by targeting cell signaling pathways. J Am Coll Cardiol 44:1103–1110

    Article  PubMed  Google Scholar 

  60. Yap LB, Ashrafian A, Mukerjee D, Coghlan JG, Timms PM (2004) The natriuretic peptides and their role in disorders of right heart dysfunction and pulmonary hypertension. Clin Biochem 37:847–856

    Article  PubMed  CAS  Google Scholar 

  61. Zellner C, Protter AA, Ko E, Pothireddy MR, DeMarco T, Hutchison SJ, Chou TM, Chatterjee K, Sudhir K (1999) Coronary vasodilator effects of BNP: mechanisms of action in coronary conductance and resistance arteries. Am J Physiol 276:H1049–H1057

    PubMed  CAS  Google Scholar 

  62. Zhang J, Xia S-L, Block ER, Patel JM (2002) NO upregulation of a cyclic nucleotide-gated channel contributes to calcium elevation in endothelial cells. Am J Physiol 283:C1080–C1089

    CAS  Google Scholar 

  63. Zhang SJ, Yang X-M, Liu GS, Cohen MV, Pemberton K, Downey JM (2003) CGX-1051, a peptide from Conus snail venom, attenuates infarction in rabbit hearts when administered at reperfusion. J Cardiovasc Pharmacol 42:764–771

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This study was supported in part by grants HL-20648 and HL-50688 from the Heart, Lung and Blood Institute of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael V. Cohen.

Additional information

X.-M. Yang and S. Philipp contributed equally to this work.

Returned for revision: 4 January 2006

Revision received: 11 January 2006

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, XM., Philipp, S., Downey, J.M. et al. Atrial natriuretic peptide administered just prior to reperfusion limits infarction in rabbit hearts. Basic Res Cardiol 101, 311–318 (2006). https://doi.org/10.1007/s00395-006-0587-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00395-006-0587-2

Keywords

Navigation