Skip to main content
Log in

Pre– and postconditioning during cardiac surgery

  • INVITED REVIEW
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

In spite of improved myocardial protection, postoperative arrhythmias and cardiac failure are still important problems causing morbidity and mortality in cardiac surgery. Ischemic preconditioning has been widely investigated experimentally with the purpose of identifying new therapeutic agents, but we have not unraveled the underlying mechanisms and we are not able yet to exploit them pharmacologically in clinical practice. Studies of preconditioning in cardiac surgery provide conflicting results, but the majority of studies show that ischemic preconditioning is an effective adjunct to myocardial protection in cardiac surgery. Interventions aimed at modifying reperfusion, or postconditioning, have the advantage that they also can be used after the ischemic insult has occurred, i.e. also in situations with “non-scheduled” ischemia. Postconditioning, as preconditioning, needs pharmacological mimics to be used routinely in settings of cardiac surgery or other human interventions. Possible common signaling pathways of the two phenomena are discussed, and suggested directions for clinical studies are outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Armstrong SC (2004) Protein kinase activation and myocardial ischemia-reperfusion injury. Cardiovasc Res 61:427–436

    Google Scholar 

  2. Arnim CA von, Etrich SM, Timmler M, Riepe MV (2002) Gender-dependent hypoxic tolerance mediated via genderspecific mechanisms. J Neurosci Res 68:84–88

    Google Scholar 

  3. Baxter GF, Ferdinandy P (2001) Delayed preconditioning of myocardium: current perspectives. Basic Res Cardiol 96:329–344

    Google Scholar 

  4. Beauchamp P, Richard V, Tamion F, Lallemand F, Lebreton JP, Vaudry H, Daveau M, Thuillez C (1999) Protective effects of preconditioning in cultured rat endothelial cells: effects on neutriphil adhesion and expression of ICAM-1 after anoxia and reoxygenation. Circulation 100:541–546

    Google Scholar 

  5. Bolli R (2000) The late phase of preconditioning. Circ Res 87:972–983

    Google Scholar 

  6. Budas GR, Jovanovic S, Crawford RM, Jovanovic A (2004) Hypoxia-induced preconditioning in adult stimulated cardiomyocytes is mediated by the opening and trafficking of sarcolemal KATP channel. FASEB J 18:1046–1048

    Google Scholar 

  7. Burns PG, Krukenkamp IB, Calderone CA, Gaudette GR, Bukhari EA, Levitsky S (1995) Does cardiopulmonary bypass alone elicit myoprotective preconditioning? Circulation 92 (suppl): II447–II451

    Google Scholar 

  8. Burns PG, Krukenkamp IB, Calderone CA, Kirvaitis RJ, Gaudette GR, Levitsky S (1996) Is the preconditioning response conserved in senescent myocardium? Ann Thorac Surg 61:925–929

    Google Scholar 

  9. Cremer J, Steinhoff G, Karck M, Ahnsell T, Brandt M, Teebken OE, Hollander D, Haverich A (1997) Ischemic preconditioning prior to myocardial protection with cold blood cardioplegia in coronary surgery. Eur J Cardiothorac Surg 12:753–758

    Google Scholar 

  10. Dawn B, Bolli R (2002) Role of nitric oxide in myocardial preconditioning. Ann NY Acad Sci 962:18–41

    Google Scholar 

  11. Ferdinandy P, Szilvassy Z , Horvath LI, Csont T, Conka C, Nagy E, Szentgyorgyi R, Nagy I, Koltai M, Dux L (1997) Loss of pacing-induced preconditioning in rat hearts: Role of nitric oxide and cholesterol-enriched diet. J Mol Cell Cardiol 29:3321–3333

    Google Scholar 

  12. Galagudza M, Valen G, Vaage J (2004) Brief global ischemia converts persistent reperfusion-induced ventricular fibrillation into regular rhythm in the rat heart. Interact Cardiovasc Thorac Surg 25:1006–1010

    Google Scholar 

  13. Garlid KD (2000) Opening mitochondrial K(ATP) in the heart – what happens, and what does not happen. Basic Res Cardiol 95:275–279

    Google Scholar 

  14. Halkos ME, Kerendi F, Corvera JS, Wang NP, Payne CS, Sun HY, Guyton RA, Vinten-Johansen J, Zhao ZQ (2004) Myocardial protection with postconditioning is not enhanced by ischemic preconditioning. Ann Thorac Surg 78:961–969

    Google Scholar 

  15. Hattori R, Matsui H, Kitano M, Ichihara Y, Ogawa S, Hirai M, Hayashi H, Saito B (1998) Staged reperfusion preserves the coronary flow reserve, especially in regions not severely damaged by ischemic injury in the canine heart. Angiology 49:991–1004

    Google Scholar 

  16. Hausenloy DJ, Mocanu MM, Yellon DM (2004) Ischemic preconditioning protects by activating pro-survival kinases at reperfusion. Am J Physiol 288:H971– H976

    Google Scholar 

  17. Heusch G (2001) Editorial comment: Nitroglycerin and delayed preconditioning in humans. Yet another mechanism for an old drug? Circulation 103:2876–2878

    Google Scholar 

  18. Heusch G (2004) Editorial comment: Postconditioning. Old wine in a new bottle? J Am Coll Cardiol 44:1111–1112

    Google Scholar 

  19. Hiasa G, Hamada M, Ikeda S, Hiwada K (2001) Ischemic preconditioning and lipopolysaccharide attenuate nuclear factor kappa-B activation and gene expression of inflammatory cytokines in the ischemic-reperfused rat heart. Jpn Circ J 65:984–990

    Google Scholar 

  20. Hirai T, Fujita M, Yamanishi K, Ohno A, Miwa K, Sasayama S (1993) Significance of preinfarction angina for preservation of left ventricular function in acute myocardial infarction. Am Heart J 24:19–23

    Google Scholar 

  21. Hori M, Kitakaze M, Sato S, Takashima S, Iwakura K, Inoue M, Kitabatake A, Kami T (1991) Staged reperfusion attenuates myocardial stunning in dogs. Role of transient acidosis during early reperfusion. Circulation 84:2135–2145

    Google Scholar 

  22. Illes RW, Swoyer KD (1998) Prospective, randomized clinical study of ischemic preconditioning as an adjunct to intermittent cold blood cardioplegia. Ann Thorac Surg 65:748–752; discussion 752–753

    Google Scholar 

  23. Jenkins DP, Pugsley WB, Alkhulai. AM, Kemp M, Hooper J, Yellon DM (1997) Ischemic preconditioning reduces troponin T release in patients undergoing coronary artery bypass surgery. Heart 77:314–318

    Google Scholar 

  24. Kaukoranta PK, Lepojarvi MP, Ylitalo KV, Kiviluoma KT, Pauhkurinen KJ (1997) Normothermic retrograde blood cardioplegia with or without preceeding ischemic preconditioning. Ann Thorac Surg 63:1268–1274

    Google Scholar 

  25. Kin H, Zhao ZQ, Sun HY, Wang NP, Corvera JS, Halkos ME, Kerendi F, Guyton RA, Vinten-Johansen J (2004) Postconditioning attenuates myocardial ischemia-reperfusion injury inhibiting events in the early minutes of reperfusion. Cardiovasc Res 62:74–85

    Google Scholar 

  26. Kirklin JW, Barratt-Boyes BG, Kouchoukos NT (eds) (2003) Myocardial protection during operations with cardiopulmonary bypass. In: Cardiac Surgery, Churchill Livingstone, New York, pp 131–162

  27. Kloner RA, Shook T, Przyklenk K, Davis VG, Junio L, Matthews RV et al. (1995) Previous angina alters in-hospital outcome in TIMI 4. A clinical correlate to preconditioning? Circulation 91:37–47

    Google Scholar 

  28. Kolar F, Ostadal B (2004) Molecular mechanisms of cardiac protection by adaptation to chronic hypoxia. Physiol Res 53:S3–S13

    Google Scholar 

  29. Kolocassides KG, Galinanes M, Hearse D (1994) Ischemic preconditioning, cardioplegia, or both? J Mol Cell Cardiol 26:1411–1414

    Google Scholar 

  30. Krieg T, Qin Q, Philipp S, Alexeyev MF, Cohen MV, Downey JM (2004) Acetylcholine and bradykinin trigger preconditioning in the heart through a pathway that includes Akt and NOS. Am J Physiol 287:H2606–H2611

    Google Scholar 

  31. Laude K, Beauchamp P, Thuillez C, Richard V (2002) Endothelial effects of preconditioning. Cardiovasc Res 55:466–473

    Google Scholar 

  32. Lee TM, Su SF, Tsai CC, Lee YT, Tsai CH (2000) Cardioprotective effects of 17-beta estradiol produced by activation of mitochondrial ATP-sensitive potassium channels in canine hearts. J Mol Cell Cardiol 32:1147–1158

    Google Scholar 

  33. Leesar MA, Stoddard MF, Dawn B, Jasti VG, Masden R, Bolli R (2001) Delayed preconditioning-mimetic action of nitroglycerin in patients undergoing coronary angioplasty. Circulation 103:2935–2941

    Google Scholar 

  34. Li G, Chen S, Lu E, Li Y (1999) Ischemic preconditioning improves preservation with cold blood cardioplegia in valve replacement patients. Eur J Cardiothorac Surg 15:653–657

    Google Scholar 

  35. Li G, Tokuno S, Tähepôld P, Vaage J, Löwbeer C, Valen G (2001) Preconditioning protects the severely atherosclerotic mouse heart. Ann Thorac Surg 71:1296–1303

    Google Scholar 

  36. Lu EX, Chen SX, Yuan MD, Hu TH, Zhou HC, Luo WJ, Li GH, Xu LM (1997) Preconditioning improves myocardial preservation in patients undergoing open heart operations. Ann Thorac Surg 64:1320–1324

    Google Scholar 

  37. Marber MS (2000) Ischemic preconditioning in isolated cells. Circ Res 86:926–931

    Google Scholar 

  38. Mehta JL, Saldeen TGP, Rand K (1998) Interactive role of infection, inflammation and traditional risk factors in atherosclerosis and coronary artery disease. J Am Coll Cardiol 31:1217–1225

    Google Scholar 

  39. Murphy E (2004) Primary and secondary signaling pathways in early preconditioning converge in the mitochondria to produce cardioprotection. Circ Res 94:7–16

    Google Scholar 

  40. Murry CE, Jennings RB, Reimer KA (1986) Preconditioning with ischemia: a delay in lethal injury in ischemic myocardium. Circulation 74:1124–1136

    Google Scholar 

  41. Okamoto F, Allen BS, Buckberg GD, Bugyi H, Leaf J (1986) Studies of controlled reperfusion after ischemia. XIV. Reperfusion conditions: importance of ensuring gentle versus sudden reperfusion during relief of coronary occlusion. J Thorac Cardiovasc Surg 92:613–620

    Google Scholar 

  42. Oldenburg O, Cohen MV, Downey JM (2003) Mitochondrial K(ATP) channels in preconditioning. J Mol Cell Cardiol 35:569–575

    Google Scholar 

  43. O’Rourke B (2002) Myocardial KATP channels in preconditioning. Circ Res 87:845–855

    Google Scholar 

  44. Paparella D, Yau TM, Young E (2002) Cardiopulmonary bypass induced inflammation: pathophysiology and treatment. An update. Eur J Cardiothorac Surg 21:232–244

    Google Scholar 

  45. Peng CF, Murphy ML, Colwell K, Straub KD (1989) Controlled versus hyperemic flow during reperfusion of jeopardized ischemic myocardium. Am Heart J 117:515–522

    Google Scholar 

  46. Perrault LP, Menasche P, Bel A, de Chaumaray T, Peynet J, Mondy A, Olivero P, Emanoil-Ravier R, Moalic JM (1996) Ischemic preconditioning in cardiac surgery: a word of caution. J Thorac Cardiovasc Surg 112:1378–1386

    Google Scholar 

  47. Piper HM, Abdallah Y, Schäfer C (2004) The .rst minutes of reperfusion: a window of opportunity for cardioprotection. Cardiovasc Res 61:365–371

    Google Scholar 

  48. Pouzet B, Lecharny JB, Dehoux M, Paquin S, Kitakaze M, Mantz J, Menasche P (2002) Is there a place for preconditioning during cardiac operations in humans? Ann Thorac Surg 73:843–848

    Google Scholar 

  49. Przyklenk K, Darling CE, Dickson EW, Whittaker P (2003) Cardioprotection ”outside the box”. Basic Res Cardiol 98:149–157

    Google Scholar 

  50. Sato H, Jordan JE, Zhao ZQ, Sarvothan SS, Vinten-Johansen J (1997) Gradual reperfusion reduces infarct size and endothelial injury but augments neutrophil accumulation. Ann Thorac Surg 64:1099–1107

    Google Scholar 

  51. Schulz R, Cohen MV, Behrends M, Downey JM, Heusch G (2001) Signal transduction of ischemic preconditioning. Cardiovasc Res 52:181–198

    Google Scholar 

  52. Schulz R, Kelm M, Heusch G (2004) Nitric oxide in myocardial ischemia/reperfusion injury. Cardiovasc Res 61:402–413

    Google Scholar 

  53. Shinmura K, Nagai M, Tamaki K, Bolli R (2004) Gender and aging do not impair opioid-related preconditioning in rats. Basic Res Cardiol 99:46–55

    Google Scholar 

  54. Smith RM, Lecour S, Sack MN (2002) Innate immunity and cardiac preconditioning: a putative intrinsic cardioprotective program. Cardiovasc Res 55:474–482

    Google Scholar 

  55. Song X, Li G, Vaage J, Valen G (2003) Effects of sex, gonadectomy, and estrogen substitution on ischemic preconditioning and ischemia-reperfusion injury in mice. Acta Physiol Scand 177:459–466

    Google Scholar 

  56. Sun HY, Wang NP, Kerendi F, Halkos ME, Kin H, Guyton RA, Vinten-Johansen J, Zhao ZQ (2004) Hypoxic postconditioning reduces cardiomyocyte loss by inhibiting the generation of reactive oxygen species and intracellular calsium overload. Am J Physiol 24:epub ahead of print

    Google Scholar 

  57. Szekeres L, Szilvassy Z, Ferdinandy P, Nagy I, Karcsu S, Csati S (1997) Delayed cardiac protection against harmful consequences of stress can be induced in experimental atherosclerosis in rabbits. J Mol Cell Cardiol 29:1977–1983

    Google Scholar 

  58. Szmagal P, Morawski W, Krejca M, Gburek T, Bochenek A (1998) Evaluation of perioperative myocardial tissue damage in ischemically preconditioned human heart during aorto coronary bypass surgery. J Cardiovasc Surg (Torino) 39:791–795

    Google Scholar 

  59. Takeshima S, Vaage J, Löwbeer C, Valen G (1999) Does hypothermia or hyperkalemia influence the preconditioning response? Acta Physiol Scand 33:79–87

    Google Scholar 

  60. Tanaka K, Ludwig LM, Kersten JR, Pagel PS, Warltier DC (2004) Mechanisms of cardioprotection by volatile anesthetics. Anesthesiology 100:707–721

    Google Scholar 

  61. Teoh LK, Grant R, Hulf JA, Pugsley WB, Yellon DM (2002) The effect of preconditioning (ischemic and pharmacological) on myocardial necrosis following coronary artery bypass graft surgery. Cardiovasc Res 53:175–180

    Google Scholar 

  62. Tokuno S, Chen F, Jiang J, Pernow J, Valen G (2002) Effects of spontaneous or induced brain infarctions on vessel reactivity: The role of iNOS. Life Sciences 71:679–692

    Google Scholar 

  63. Tokuno S, Hinokiyama K, Tokuno K, Löwbeer C, Valen G (2002) Spontaneous ischemic events in the heart and brain precondition the hearts of severely atherosclerotic mice. Atheroscler Thromb Vasc Biol 22:995–1001

    Google Scholar 

  64. Tsang A, Hausenloy DJ, Mocanu MM, Yellon DM (2004) Postconditioning: A form of “modified reperfusion” protects the myocardium by activating the phosphatidylinositol 3-kinase-Akt pathway. Circ Res 95:230–232

    Google Scholar 

  65. Tähepôld P, Elfström P, Eha I, Kals J, Taal G, Taalonpoika A, Valen G, Vaage J, Starkopf J (2002) Exposure of rats to hyperoxia enhances the relaxation of isolated aortic rings and reduces the infarct size of isolated hearts. Acta Physiol Scand 175:271–277

    Google Scholar 

  66. Uchiyama T, Engelman RM, Maulik N, Das DK (2004) Role of Akt signaling in mitochondrial survival pathway triggered by hypoxic preconditioning. Circulation 109:3042–3049

    Google Scholar 

  67. Vaage J, Jensen U, Ericsson A (2000) Neurologic injury in cardiac surgery: with special emphasis on aortic atherosclerosis as the single most important risk factor. Scand Cardiovasc J 34:550–57

    Google Scholar 

  68. Vaage J, Valen G (2003) Preconditioning in cardiac surgery. Ann Thorac Surg 75:S709–S714

    Google Scholar 

  69. Valen G (2003) Cellular signalling mechanisms in adaptation to ischemiainduced myocardial damage. Ann Med 35:1–8

    Google Scholar 

  70. Valen G, Hansson GK, Dumitrescu A, Vaage J (2000) Unstable angina activates myocardial heat shock protein 72, endothelial nitric oxide synthase, and transcription factors NFkB and AP-1. Cardiovasc Res 47:49–56

    Google Scholar 

  71. Wang X, Wei M, Kuukasjarvi P, Laurikka J, Jarvinen O, Rinne T, Honkonen EL, Tarkka M (2003) Novel pharmacological preconditioning with diazoxide attenuates myocardial stunning in coronary artery bypass grafting. Eur J Cardiothorac Surg 24:967–973

    Google Scholar 

  72. Wei M, Kuukasjarvi P, Laurikka J, Pehkonen E, Kaukinen S, Laine S, Tarkka MR (2001) Cytokine responses in patients undergoing coronary artery bypass surgery after ischemic preconditioning. Scand Cardiovasc J 35:142–146

    Google Scholar 

  73. Wu Z-K, Laurikka J, Saraste A, Kyto V, Pehkonen EJ, Savunen T, Tarkka MR (2003) Cardiomyocyte apoptosis and ischemic preconditioning in open heart operations. Ann Thor Surg 76:528–534

    Google Scholar 

  74. Wu ZK, Iivainen T, Pehkonen E, Laurikka J, Tarkka MR (2002) Ischemic preconditioning suppresses ventricular tachyarrhythmias after myocardial revascularization. Circulation 106:3091–3096

    Google Scholar 

  75. Wu ZK, Iivainen T, Pehkonen E, Laurikka J, Zhang S, Tarkka MR (2003) Fibrillation in patients subjected to coronary artery bypass grafting. J Thorac Cardiovasc Surg 126:1477–1482

    Google Scholar 

  76. Wu Z-K, Pehkonen E, Laurikka J, Kaukinen L, Honkonen EL, Kaukinen S, Laippala P, Tarkka MR (2001) The protective effects of preconditioning decline in aged patients undergoing coronary artery bypass grafting. J Thorac Cardiovasc Surg 122:972–978

    Google Scholar 

  77. Wu Z-K, Pehkonen E, Laurikka J, Kaukinen L, Honkonen EL, Kaukinen S, Tarkka MR (2000) Protective effect of unstable angina in coronary artery bypass surgery. Scand Cardiovasc J 34:486–492

    Google Scholar 

  78. Wu Z-K, Tarkka M, Eloranta J, Pehkonen E, Kaukinen L, Honkonen EL, Kaukinen S, Tarkka MR (2001) Effect of ischemic preconditioning (IP) on myocardial protection in CABG patients: can the free radicals act as a trigger for IP? Chest 119:1061–1068

    Google Scholar 

  79. Wu Z-K, Tarkka M, Pehkonen E, Kaukinen L, Honkonen EL, Kaukinen S (2000) Beneficial effects of ischemic preconditioning on right ventricular function after coronary artery bypass grafting. Ann Thorac Surg 70:1551–1557

    Google Scholar 

  80. Wu Z-K, Tarkka M, Pehkonen E, Kaukinen L, Honkonen EL, Kaukinen S (2000) Ischaemic preconditioning has beneficial effects on left ventricular haemodynamic function after a coronary artery bypass grafting operation. Scand Cardiovasc J 34:247–253

    Google Scholar 

  81. Yang X-M, Proctor JB, Cui L, Krieg T, Downey JM, Cohen MV (2004) Multiple, brief coronary occlusions during early reperfusion protect rabbit hearts by targeting cell signal pathways. J Am Coll Cardiol 44:1103–1110

    Google Scholar 

  82. Yellon DM, Alkhulaifi AM, Pugsley WB (1993) Preconditioning the human myocardium. Lancet 342:276–277

    Google Scholar 

  83. Yellon DM, Dana A (2000) The preconditioning phenomenon. A tool for the scientist or a clinical reality? Circ Res 87:543–550

    Google Scholar 

  84. Zeeuw S De, van den Doel MA, Duncker DJ, Verdouw PD (1999) New insights into cardioprotection by ischemic preconditioning and other forms of stress. Ann N Y Acad Sci 874:178–191

    Google Scholar 

  85. Zhao ZQ, Corvera JS, Halkos ME, Kerendi ME, Wang NP, Guyton RA, Vinten- Johansen J (2003) Inhibition of myocardial injury by ischemic postconditioning during reperfusion: comparison with ischemic preconditioning. Am J Physiol 285:H579–H588

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Valen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Valen, G., Vaage, J. Pre– and postconditioning during cardiac surgery. Basic Res Cardiol 100, 179–186 (2005). https://doi.org/10.1007/s00395-005-0517-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00395-005-0517-8

Key words

Navigation