Skip to main content

Advertisement

Log in

Endothelial nitric oxide synthase gene transfer restores endothelium–dependent relaxations and attenuates lesion formation in carotid arteries in apolipoprotein E–deficient mice

  • ORIGINAL CONTRIBUTION
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Nitric oxide (NO) and monocyte chemoattractant protein–1 (MCP-1) exert partly opposing effects in vascular biology. NO plays pleiotropic vasoprotective roles including vasodilation and inhibition of platelet aggregation, smooth muscle cell proliferation, and endothelial monocyte adhesion, the last effect being mediated by MCP–1 downregulation. Early stages of arteriosclerosis are associated with reduced NO bioactivity and enhanced MCP–1 expression. We have evaluated adenovirus–mediated gene transfer of human endothelial NO synthase (eNOS) and of a N–terminal deletion (8ND) mutant of the MCP–1 gene that acts as a MCP–1 inhibitor in arteriosclerosis–prone, apolipoprotein E-deficient (ApoE–/–) mice. Endotheliumdependent relaxations were impaired in carotid arteries instilled with a noncoding adenoviral vector but were restored by eNOS gene transfer (p < 0.01). A perivascular collar was placed around the common carotid artery to accelerate lesion formation. eNOS gene transfer reduced lesion surface areas, intima/media ratios, and macrophage contents in the media at 5–week follow–up (p < 0.05). In contrast, 8ND–MCP-1 gene transfer did not prevent lesion formation. In conclusion, eNOS gene transfer restores endothelium–dependent vasodilation and inhibits lesion formation in ApoE–/– mouse carotids. Further studies are needed to assess whether vasoprotection is maintained at later disease stages and to evaluate the long–term efficacy of eNOS gene therapy for primary arteriosclerosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aji W, Ravalli S, Szabolcs M, Jiang XC, Sciacca RR, Michler RE, Cannon PJ (1997) L-arginine prevents xanthoma development and inhibits atherosclerosis in LDL receptor knockout mice. Circulation 95:430–437

    Google Scholar 

  2. Bauersachs J, Bouloumi A, Fraccarollo D, Hu K, Busse R, Ertl G (1999) Endothelial dysfunction in chronic myocardial infarction despite increased vascular endothelial nitric oxide synthase and soluble guanylate cyclase expression: role of enhanced vascular superoxide production. Circulation 100:292–298

    Google Scholar 

  3. Boger RH, Bode-Boger SM, Brandes RP, Phivthongngam L, Bohme M, Nafe R, Mugge A, Frolich JC (1997) Dietary Larginine reduces the progression of atherosclerosis in cholesterol-fed rabbits: comparison with lovastatin. Circulation 96:1282–1290

    Google Scholar 

  4. Boring L, Gosling J, Cleary M, Charo IF (1998) Decreased lesion formation in CCR2-/- mice reveals a role for chemokines in the initiation of atherosclerosis. Nature 394:894–897

    Article  CAS  PubMed  Google Scholar 

  5. Buttery LDK, Chester AH, Springall DR, Borland JAA, Michel T, Yacoub MH, Polar JM (1996) Explanted vein grafts with an intact endothelium demonstrate reduced focal expression of endothelial nitric oxide synthase specific to atherosclerotic sites. J Pathol 179:197–203

    Article  CAS  PubMed  Google Scholar 

  6. Cable DG, Pompili VJ, O’Brien T, Schaff HV (1999) Recombinant gene transfer of endothelial nitric oxide synthase augments coronary artery relaxation during hypoxia. Circulation 100 (suppl II):II-335–II-339

    Google Scholar 

  7. Cayette AJ, Palacino JJ, Horten K, Cohen RA (1994) Chronic inhibition of nitric oxide production accelerates neointima formation and impairs endothelial function in hypercholesterolemic rabbits. Arterioscler Thromb 14:753–759

    PubMed  Google Scholar 

  8. Channon KM, Qian H, Neplioueva V, Blazing MA, Olmez E, Shetty GA, Youngblood SA, Pawloski J, McMahon T, Stamler JS, George SE (1998) In vivo gene transfer of nitric oxide synthase enhances vasomotor function in carotid arteries from normal and cholesterol-fed rabbits. Circulation 98:1905–1911

    Google Scholar 

  9. Channon KM, Qian H, George SE (2000) Nitric oxide synthase in atherosclerosis and vascular injury. Insights from experimental gene therapy. Arterioscler Thromb Vasc Biol 20:1873–1881

    CAS  PubMed  Google Scholar 

  10. Cooke JP, Dzau VJ (1997) Nitric oxide synthase: role in the genesis of vascular disease. Annu Rev Med 48:489–509

    Article  CAS  PubMed  Google Scholar 

  11. Drexler H, Zeiher AM, Meinzer K, Just H (1991) Correction of endothelial dysfunction in coronary microcirculation of hypercholaesterolemic patients by Larginine. Lancet 338:1546–1550

    Article  CAS  PubMed  Google Scholar 

  12. d’Uscio LV, Smith LA, Katusic ZS (2001) Hypercholesterolemia impairs endothelium- dependent relaxations in common carotid arteries of apolipoprotein E-deficient mice. Stroke 32:2658–2664

    CAS  PubMed  Google Scholar 

  13. d’Uscio LV, Milstien S, Richardson D, Smith L, Katusic ZS (2003) Long-term vitamin C treatment increases vascular tetrahydrobiopterin levels and nitric oxide synthase activity. Circ Res 92:88–95

    Article  CAS  PubMed  Google Scholar 

  14. Gong J-H, Ratkay LG, Waterfield JD, Clark-Lewis I (1997) An antagonist of monocyte chemoattractant protein 1 (MCP-1) inhibits arthritis in the MRL-lpr mouse model. J Exp Med 186:131–137

    Article  CAS  PubMed  Google Scholar 

  15. Inoue S, Egashira K, Ni W, Kitamoto S, Usui M, Otani K, Ishibashi M, Hiasa K, Nishida K, Takeshita A (2002) Antimonocyte chemoattractant protein-1 gene therapy limits progression and destabilization of established atherosclerosis in apolipoprotein E-knockout mice. Circulation 106:2700–2706

    Google Scholar 

  16. Janssens S, Bloch KD, Nong Z, Gerard RD, Zoldhelyi P, Collen D (1996) Adenoviralmediated transfer of the human endothelial nitric oxide synthase gene reduces acute hypoxic pulmonary vasoconstriction in rats. J Clin Invest 98:317–324

    CAS  PubMed  Google Scholar 

  17. Janssens S, Flaherty D, Nong Z, Varenne O, van Pelt N, Haustermans C, Zoldhelyi P, Gerard R, Collen D (1998) Human endothelial nitric oxide synthase gene transfer inhibits vascular smooth muscle cell proliferation and neointima formation after balloon injury in rats. Circulation 97:1274–1281

    Google Scholar 

  18. Juan S-H, Lee T-S, Tseng K-W, Liou J-Y, Shyue S-K, Wu KK, Chau L-Y (2001) Adenovirus- mediated heme oxygenase-1 gene transfer inhibits the development of atherosclerosis in apolipoprotein E-deficient mice. Circulation 104:1519–1525

    Google Scholar 

  19. Kawashima S, Yamashita T, Ozaki M, Ohashi Y, Azumi H, Inoue N, Hirata K, Hayashi Y, Itoh H, Yokoyama M (2001) Endothelial NO synthase overexpression inhibits lesion formation in mouse model of vascular remodeling. Arterioscler Thromb Vasc Biol 21:201–207

    CAS  PubMed  Google Scholar 

  20. Kuhlencordt PJ, Gyurko R, Han F, Scherrer-Crosbie M, Aretz TH, Hajjar R, Picard MH, Huang PL (2001) Accelerated atherosclerosis, aortic aneurysm formation, and ischemic heart disease in apolipoprotein E/endothelial nitric oxide synthase double-knockout mice. Circulation 104:448–454

    Google Scholar 

  21. Lake-Bruse KD, Faraci FM, Shesely EG, Maeda N, Sigmund CD, Heistad DD (1999) Gene transfer of endothelial nitric oxide synthase in eNOS-de.cient mice. Am J Physiol 277 (Heart Circ Physiol 46):H770–H776

    CAS  PubMed  Google Scholar 

  22. Lu B, Rutledge BJ, Gu L, Fiorillo J, Lukacs NW, Kunkel SL, North R, Gerard C, Rollins BJ (1998) Abnormalities in monocyte recruitment and cytokine expression in monocyte chemoattractant protein 1-deficient mice. J Exp Med 187:601–608

    Article  PubMed  Google Scholar 

  23. Lund DD, Faraci FM, Miller FJ Jr, Heistad DD (2000) Gene transfer of endothelial nitric oxide synthase improves relaxation of carotid arteries from diabetic rabbits. Circulation 101:1027–1023

    Google Scholar 

  24. Ming XF, Viswambharan H, Barandier C, Ruffieux J, Kaibuchi K, Rusconi S, Yang Z (2002) Rho GTPase/Rho kinase negatively regulates endothelial nitric oxide synthase phosphorylation through the inhibition of protein kinase B/Akt in human endothelial cells. Mol Cell Biol 22:8467–8477

    Article  CAS  PubMed  Google Scholar 

  25. Ni W, Egashira K, Kitamoto S, Kataoka C, Koyanagi M, Inoue S, Imaizumi K, Akiyama C, Nishida KI, Takeshita A (2001) New anti-monocyte chemoattractant protein-1 gene therapy attenuates atherosclerosis in apolipoprotein E-knockout mice. Circulation 103:2096–2101

    Google Scholar 

  26. Niebauer J, Dulak J, Chan JR, Tsao PS, Cooke JP (1999) Gene transfer of endothelial nitric oxide synthase: effects on endothelial biology. J Am Coll Cardiol 34:1201–1207

    Article  CAS  PubMed  Google Scholar 

  27. Oemar BS, Tschudi MR, Godoy N, Brovkovich V, Malinski T, Luscher TF (1998) Reduced endothelial nitric oxide synthase expression and production in human atherosclerosis. Circulation 97:2494–2498

    CAS  PubMed  Google Scholar 

  28. Ohashi Y, Kawashima S, Hirata K, Yamashita T, Ishida T, Inoue N, Sakoda T, Kurihara H, Yazaki Y, Yokoyama M (1998) Hypotension and reduced nitric oxide-elicited vasorelaxation in transgenic mice overexpressing endothelial nitric oxide synthase. J Clin Invest 102:2061–2071

    CAS  PubMed  Google Scholar 

  29. Ohta S, Komori K, Yonemitsu Y, Onahara T, Matsumoto T, Sugimachi K (2002) Intraluminal gene transfer of endothelial cell-nitric oxide synthase suppresses intimal hyperplasia of vein grafts in cholesterol- fed rabbit: A limited biological effect as a result of the loss of medial smooth muscle cells. Surgery 131:644–653

    Article  PubMed  Google Scholar 

  30. Ozaki M, Kawashima S, Yamashita T, Hirase T, Namiki M, Inoue N, Hirata K, Yasui H, Sakurai H, Yoshida Y, Masada M, Yokoyama M (2002) Overexpression of endothelial nitric oxide synthase accelerates atherosclerotic lesion formation in apoE-deficient mice. J Clin Invest 110:331–340

    Article  CAS  PubMed  Google Scholar 

  31. Palmer RM, Ashton DS, Moncada S (1988) Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature 333:664–666

    Article  CAS  PubMed  Google Scholar 

  32. Parhami F, Fang ZT, Fogelman AM, Andalibi A, Territo MC, Berliner JA (1993) Minimally modified low density lipoprotein-induced inflammatory responses in endothelial cells are mediated by cyclic adenosine monophosphate. J Clin Invest 92:471–478

    CAS  PubMed  Google Scholar 

  33. Piedrahita JA, Zhang SH, Hagaman JR, Oliver PM, Maeda N (1992) Generation of mice carrying a mutant apolipoprotein E gene inactivated by gene targeting in embryonic stem cells. Proc Natl Acad Sci USA 89:4471–4475

    CAS  PubMed  Google Scholar 

  34. Post H, Kajstura J, Lei B, Sessa WC, Byrne B, Anversa P, Hintze TH, Recchia FA (2003) Adeno-associated virus mediated gene delivery into coronary microvessels of chronically instrumented dogs. J Appl Physiol 95:1688–1694

    CAS  PubMed  Google Scholar 

  35. Qian H, Neplioueva V, Shetty GA, Channon KM, George SE (1999) Nitric oxide synthase gene therapy rapidly reduces adhesion molecule expression and inflammatory cell infiltration in carotid arteries of cholesterol-fed rabbits. Circulation 99:2979–2982

    Google Scholar 

  36. Rollins BJ (1996) Monocyte chemoattractant protein 1: a potential regulator of monocyte recruitment in in.ammatory disease. Mol Med Today 2:198–204

    Article  CAS  PubMed  Google Scholar 

  37. Tomita H, Egashira K, Kubo-Inoue M, Usui M, Koyanagi M, Shimokawa H, Takeya M, Yoshimura T, Takeshita A (1998) Inhibition of NO synthesis induces inflammatory changes and monocyte chemoattractant protein-1 expression in rat hearts and vessels. Arterioscler Thromb Vasc Biol 18:1456–1464

    CAS  PubMed  Google Scholar 

  38. Tsao PS, Wang B, Buitrago R, Shyy JY, Cooke JP (1997) Nitric oxide regulates monocyte chemotactic protein-1. Circulation 96:934–940

    Google Scholar 

  39. Usui M, Egashira K, Ohtani K, Kataoka C, Ishibashi M, Hiasa K, Katoh M, Zhao Q, Kitamoto S, Takeshita A (2002) Antimonocyte chemoattractant protein-1 gene therapy inhibits restenotic changes (neointimal hyperplasia) after balloon injury in rats and monkeys. FASEB J 16:1838–1840

    CAS  PubMed  Google Scholar 

  40. Varenne O, Pislaru S, Gillijns H, Van Pelt N, Gerard RD, Zoldhelyi P, Van de Werf F, Collen D, Janssens SP (1998) Local adenovirus-mediated transfer of human endothelial nitric oxide synthase reduces luminal narrowing after coronary angioplasty in pigs. Circulation 98:919–926

    Google Scholar 

  41. Vasquez-Vivar J, Kalyanaraman B, Martasek P, Hogg N, Masters BS, Karoui H, Tordo P, Pritchard KA Jr (1998) Superoxide generation by endothelial nitric oxide synthase: the influence of cofactors. Proc Natl Acad Sci USA 95:9220–9225

    Article  CAS  PubMed  Google Scholar 

  42. Vassalli G, Agah R, Qiao R, Aguilar C, Dichek DA (1999) A mouse model of arterial gene transfer: Antigen-specific immunity is a minor determinant of the early loss of adenovirus-mediated transgene expression. Circ Res 85:e25–e32

    CAS  PubMed  Google Scholar 

  43. Verbeuren TJ, Coene MC, Jordaens FH, Van Hove CE, Zonnekeyn LL, Herman A (1986) Effect of hypercholesterolemia on vascular reactivity in the rabbit. II. Influence of treatment with dipyridamole on endothelium-dependent and endothelium-independent responses in isolated aortas of control and hypercholesterolemic rabbits. Circ Res 59:496–504

    CAS  PubMed  Google Scholar 

  44. Von der Thüsen JH, van Berkel TJC, Biessen EAL (2001) Induction of rapid atherogenesis by perivascular carotid collar placement in apolipoprotein Edeficient and low-density lipoprotein receptor-deficient mice. Circulation 103:1164–1170

    Google Scholar 

  45. Von der Thüsen JH, Fekkes ML, Passier R, van Zonneveld, Mainfroid V, van Berkel TJC, Biessen EAL (2004) Adenoviral transfer of endothelial nitric oxide synthase attenuates lesion formation in a novel murine model of postangioplasty restenosis. Arterioscler Thromb Vasc Biol 24:357–362

    PubMed  Google Scholar 

  46. West NE, Qian H, Guzik TJ, Black E, Cai S, George SE, Channon KM (2001) Nitric oxide synthase (nNOS) gene transfer modifies venous bypass graft remodeling: effects on vascular smooth muscle cell differentiation and superoxide production. Circulation 104:1526–1532

    Google Scholar 

  47. Wilcox JN, Subramanian RR, Sundell CL, Tracey WR, Pollock JS, Harrison DJ, Marsden PA (1997) Expression of multiple isoforms of nitric oxide synthase in normal and atherosclerotic vessels. Arterioscler Thromb Vasc Biol 17:2479–2488

    CAS  PubMed  Google Scholar 

  48. Yla-Herttuala S, Lipton BA, Rosenfeld ME, Sarkioja T, Yoshimura T, Leonard EJ, Witztum JL, Steinberg D (1991) Expression of monocyte chemoattractant protein 1 in macrophage-rich areas of human and rabbit atherosclerotic lesions. Proc Natl Acad Sci USA 88:5252–5256

    CAS  PubMed  Google Scholar 

  49. Zeiher AM, Fisslthalter B, Schray-Utz B, Busse R (1995) Nitric oxide modulates the expression of monocyte chemoattractant protein 1 in cultured human endothelial cells. Circ Res 76:980–986

    CAS  PubMed  Google Scholar 

  50. Zhang YJ, Rutledge BJ, Rollins BJ (1995) A dominant negative inhibitor indicates that monocyte chemoattractant protein 1 functions as a dimer. Mol Cell Biol 15:4851–4855

    CAS  PubMed  Google Scholar 

  51. Zong P, Tune JD, Setty S, Downey HF (2002) Endogenous nitric oxide regulates right coronary blood flow during acute pulmonary hypertension in conscious dogs. Basic Res Cardiol 97:392–398

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Vassalli M.D..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mujynya–Ludunge, K., Viswambharan, H., Driscoll, R. et al. Endothelial nitric oxide synthase gene transfer restores endothelium–dependent relaxations and attenuates lesion formation in carotid arteries in apolipoprotein E–deficient mice. Basic Res Cardiol 100, 102–111 (2005). https://doi.org/10.1007/s00395-004-0500-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00395-004-0500-9

Key words

Navigation