Skip to main content

Advertisement

Log in

Effect of maternal vitamin D status on risk of adverse birth outcomes: a systematic review and dose–response meta-analysis of observational studies

  • Review
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

Accumulating evidence suggests that vitamin D deficiency increases the risk of adverse perinatal outcomes. However, the dose–response relationship between maternal vitamin D status and adverse birth outcomes remains unclear. Focusing on prospective observational studies, we aimed to explore the dose–response relationship of vitamin D status with the risk of low birth weight (LBW), macrosomia (MA), preterm birth (PTB), small for gestational age (SGA), and intrauterine growth restriction (IUGR).

Methods

Databases including PubMed, Embase, Scopus, and Web of Science were used up to 19 January 2021 to search for observational studies that fulfilled criteria as follows: cohort studies, case–cohort studies, or nested case–control studies. Random-effects models were used to pool relative risks (RRs) and 95% confidence intervals (CIs) in the observational studies.

Results

A total of 72 publications were included in this systematic review and 71 in the meta-analysis. Maternal 25-hydroxyvitamin D (25(OH)D) concentrations were inversely associated with the risk of LBW (RR: 0.65; 95% CI 0.48–0.86), PTB (RR: 0.67; 95% CI 0.57–0.79), and SGA (RR: 0.61; 95% CI 0.49–0.76) in the highest versus lowest meta-analysis, but not associated with MA and IUGR. Linear dose–response analysis showed that each 25 nmol/L increase in 25(OH)D was associated with a 6% and 10% reduction in the risk of PTB (RR: 0.94; 95% CI 0.90–0.98) and SGA (RR: 0.90; 95% CI 0.84–0.97), respectively.

Conclusion

Our study suggests that a sufficient vitamin D status during pregnancy is protective against the risk of LBW, PTB, and SGA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and materials

All data generated or analyzed during this study are included in this article and its additional files.

Code availability

Not applicable.

Abbreviations

CLIA:

Chemiluminescent immunoassay

ECLIA:

Electrochemical luminescence immunoassay

EIA:

Enzyme immunoassay

ELISA:

Enzyme-linked immunosorbent assay

FFQ:

Food frequency questionnaire

HPLC:

High-performance liquid chromatography

IUGR:

Intrauterine growth restriction

LBW:

Low birth weight

LC–MS:

Liquid chromatography–mass spectrometry

MA:

Macrosomia

NOS:

Newcastle Ottawa scale

PTB:

Preterm birth

RIA:

Radioimmunoassay

RR:

Relative risk

SGA:

Small for gestational age

References

  1. Blencowe H, Krasevec J, de Onis M, Black RE, An X, Stevens GA, Borghi E, Hayashi C, Estevez D, Cegolon L, Shiekh S, Ponce Hardy V, Lawn JE, Cousens S (2019) National, regional, and worldwide estimates of low birthweight in 2015, with trends from 2000: a systematic analysis. Lancet Glob Health 7(7):e849–e860. https://doi.org/10.1016/S2214-109X(18)30565-5

    Article  PubMed  PubMed Central  Google Scholar 

  2. Chawanpaiboon S, Vogel JP, Moller AB, Lumbiganon P, Petzold M, Hogan D, Landoulsi S, Jampathong N, Kongwattanakul K, Laopaiboon M, Lewis C, Rattanakanokchai S, Teng DN, Thinkhamrop J, Watananirun K, Zhang J, Zhou W, Gulmezoglu AM (2019) Global, regional, and national estimates of levels of preterm birth in 2014: a systematic review and modelling analysis. Lancet Glob Health 7(1):e37–e46. https://doi.org/10.1016/S2214-109X(18)30451-0

    Article  PubMed  Google Scholar 

  3. Katz J, Lee AC, Kozuki N, Lawn JE, Cousens S, Blencowe H, Ezzati M, Bhutta ZA, Marchant T, Willey BA, Adair L, Barros F, Baqui AH, Christian P, Fawzi W, Gonzalez R, Humphrey J, Huybregts L, Kolsteren P, Mongkolchati A, Mullany LC, Ndyomugyenyi R, Nien JK, Osrin D, Roberfroid D, Sania A, Schmiegelow C, Silveira MF, Tielsch J, Vaidya A, Velaphi SC, Victora CG, Watson-Jones D, Black RE, Group CS-f-G-A-PBW (2013) Mortality risk in preterm and small-for-gestational-age infants in low-income and middle-income countries: a pooled country analysis. Lancet 382(9890):417–425. https://doi.org/10.1016/S0140-6736(13)60993-9

    Article  PubMed  PubMed Central  Google Scholar 

  4. Hug L, Alexander M, You D, Alkema L, Estimation UNI-aGfCM (2019) National, regional, and global levels and trends in neonatal mortality between 1990 and 2017, with scenario-based projections to 2030: a systematic analysis. Lancet Glob Health 7(6):e710–e720. https://doi.org/10.1016/S2214-109X(19)30163-9

    Article  PubMed  PubMed Central  Google Scholar 

  5. Abitbol CL, Rodriguez MM (2012) The long-term renal and cardiovascular consequences of prematurity. Nat Rev Nephrol 8(5):265–274. https://doi.org/10.1038/nrneph.2012.38

    Article  CAS  PubMed  Google Scholar 

  6. Visentin S, Grumolato F, Nardelli GB, Di Camillo B, Grisan E, Cosmi E (2014) Early origins of adult disease: low birth weight and vascular remodeling. Atherosclerosis 237(2):391–399. https://doi.org/10.1016/j.atherosclerosis.2014.09.027

    Article  CAS  PubMed  Google Scholar 

  7. Mericq V, Martinez-Aguayo A, Uauy R, Iniguez G, Van der Steen M, Hokken-Koelega A (2017) Long-term metabolic risk among children born premature or small for gestational age. Nat Rev Endocrinol 13(1):50–62. https://doi.org/10.1038/nrendo.2016.127

    Article  CAS  PubMed  Google Scholar 

  8. Abu-Saad K, Fraser D (2010) Maternal nutrition and birth outcomes. Epidemiol Rev 32:5–25. https://doi.org/10.1093/epirev/mxq001

    Article  PubMed  Google Scholar 

  9. Blumenshine P, Egerter S, Barclay CJ, Cubbin C, Braveman PA (2010) Socioeconomic disparities in adverse birth outcomes: a systematic review. Am J Prev Med 39(3):263–272. https://doi.org/10.1016/j.amepre.2010.05.012

    Article  PubMed  Google Scholar 

  10. Wang L, Guo P, Tong H, Wang A, Chang Y, Guo X, Gong J, Song C, Wu L, Wang T, Hopke PK, Chen X, Tang NJ, Mao H (2020) Traffic-related metrics and adverse birth outcomes: a systematic review and meta-analysis. Environ Res 188:109752. https://doi.org/10.1016/j.envres.2020.109752

    Article  CAS  PubMed  Google Scholar 

  11. Choi R, Kim S, Yoo H, Cho YY, Kim SW, Chung JH, Oh SY, Lee SY (2015) High prevalence of vitamin D deficiency in pregnant Korean women: the first trimester and the winter season as risk factors for vitamin D deficiency. Nutrients 7(5):3427–3448. https://doi.org/10.3390/nu7053427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. van der Pligt P, Willcox J, Szymlek-Gay EA, Murray E, Worsley A, Daly RM (2018) Associations of maternal vitamin d deficiency with pregnancy and neonatal complications in developing countries: a systematic review. Nutrients 10(5):640. https://doi.org/10.3390/nu10050640

    Article  CAS  PubMed Central  Google Scholar 

  13. Mogire RM, Mutua A, Kimita W, Kamau A, Bejon P, Pettifor JM, Adeyemo A, Williams TN, Atkinson SH (2020) Prevalence of vitamin D deficiency in Africa: a systematic review and meta-analysis. Lancet Glob Health 8(1):e134–e142. https://doi.org/10.1016/S2214-109X(19)30457-7

    Article  PubMed  Google Scholar 

  14. Roth DE, Leung M, Mesfin E, Qamar H, Watterworth J, Papp E (2017) Vitamin D supplementation during pregnancy: state of the evidence from a systematic review of randomised trials. BMJ 359:j5237. https://doi.org/10.1136/bmj.j5237

    Article  PubMed  PubMed Central  Google Scholar 

  15. De-Regil LM, Palacios C, Lombardo LK, Peña-Rosas JP (2016) Vitamin D supplementation for women during pregnancy. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD008873.pub3

    Article  PubMed  PubMed Central  Google Scholar 

  16. Palacios C, Kostiuk LK, Peña-Rosas JP (2019) Vitamin D supplementation for women during pregnancy. Cochrane Database Syst Rev 7(7):Cd00873. https://doi.org/10.1002/14651858.CD008873.pub4

    Article  Google Scholar 

  17. Chen YH, Fu L, Hao JH, Yu Z, Zhu P, Wang H, Xu YY, Zhang C, Tao FB, Xu DX (2015) Maternal vitamin D deficiency during pregnancy elevates the risks of small for gestational age and low birth weight infants in Chinese population. J Clin Endocrinol Metab 100(5):1912–1919. https://doi.org/10.1210/jc.2014-4407

    Article  CAS  PubMed  Google Scholar 

  18. Meng DH, Zhang Y, Ma SS, Hu HL, Li JJ, Yin WJ, Tao RX, Zhu P (2020) The role of parathyroid hormone during pregnancy on the relationship between maternal vitamin D deficiency and fetal growth restriction: a prospective birth cohort study. Br J Nutr 124(4):432–439. https://doi.org/10.1017/S0007114520001105

    Article  CAS  PubMed  Google Scholar 

  19. Pérez-Castillo ÍM, Rivero-Blanco T, León-Ríos XA, Expósito-Ruiz M, López-Criado MS, Aguilar-Cordero MJ (2020) Associations of vitamin d deficiency, parathyroid hormone, calcium, and phosphorus with perinatal adverse outcomes. A Prospective Cohort Study Nutrients 12(11):1–14. https://doi.org/10.3390/nu12113279

    Article  CAS  Google Scholar 

  20. Ong YL, Quah PL, Tint MT, Aris IM, Chen LW, van Dam RM, Heppe D, Saw SM, Godfrey KM, Gluckman PD, Chong YS, Yap F, Lee YS, Foong-Fong Chong M (2016) The association of maternal vitamin D status with infant birth outcomes, postnatal growth and adiposity in the first 2 years of life in a multi-ethnic Asian population: the Growing Up in Singapore Towards healthy Outcomes (GUSTO) cohort study. Br J Nutr 116(4):621–631. https://doi.org/10.1017/S0007114516000623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Monier I, Baptiste A, Tsatsaris V, Senat MV, Jani J, Jouannic JM, Winer N, Elie C, Souberbielle JC, Zeitlin J, Benachi A (2019) First trimester maternal Vitamin D status and risks of preterm birth and small-for-gestational age. Nutrients 11(12):3042. https://doi.org/10.3390/nu11123042

    Article  CAS  PubMed Central  Google Scholar 

  22. Sudfeld CR, Jacobson DL, Rueda NM, Neri D, Mendez AJ, Butler L, Siminski S, Hendricks KM, Mellins CA, Duggan CP, Miller TL, Pediatric HIVACS (2019) Third trimester vitamin D status is associated with birth outcomes and linear growth of HIV-exposed uninfected infants in the United States. J Acquir Immune Defic Syndr 81(3):336–344. https://doi.org/10.1097/QAI.0000000000002041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tous M, Villalobos M, Iglesias L, Fernandez-Barres S, Arija V (2020) Vitamin D status during pregnancy and offspring outcomes: a systematic review and meta-analysis of observational studies. Eur J Clin Nutr 74(1):36–53. https://doi.org/10.1038/s41430-018-0373-x

    Article  CAS  PubMed  Google Scholar 

  24. Fang K, He Y, Mu M, Liu K (2021) Maternal vitamin D deficiency during pregnancy and low birth weight: a systematic review and meta-analysis. J Matern Fetal Neonatal Med 34(7):1167–1173. https://doi.org/10.1080/14767058.2019.1623780

    Article  PubMed  Google Scholar 

  25. Amegah AK, Klevor MK, Wagner CL (2017) Maternal vitamin D insufficiency and risk of adverse pregnancy and birth outcomes: a systematic review and meta-analysis of longitudinal studies. PLoS ONE 12(3):e0173605. https://doi.org/10.1371/journal.pone.0173605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Martinez-Dominguez SJ, Tajada M, Chedraui P, Perez-Lopez FR (2018) Systematic review and meta-analysis of Spanish studies regarding the association between maternal 25-hydroxyvitamin D levels and perinatal outcomes. Gynecol Endocrinol 34(11):987–994. https://doi.org/10.1080/09513590.2018.1472761

    Article  CAS  PubMed  Google Scholar 

  27. Aguilar-Cordero MJ, Lasserrot-Cuadrado A, Mur-Villar N, Leon-Rios XA, Rivero-Blanco T, Perez-Castillo IM (2020) Vitamin D, preeclampsia and prematurity: A systematic review and meta-analysis of observational and interventional studies. Midwifery 87:102707. https://doi.org/10.1016/j.midw.2020.102707

    Article  CAS  PubMed  Google Scholar 

  28. Moher D, Liberati A, Tetzlaff J, Altman DG, Group P (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 6(7):e1000097. https://doi.org/10.1371/journal.pmed.1000097

    Article  PubMed  PubMed Central  Google Scholar 

  29. Zhou J, Su L, Liu M, Liu Y, Cao X, Wang Z, Xiao H (2014) Associations between 25-hydroxyvitamin D levels and pregnancy outcomes: a prospective observational study in southern China. Eur J Clin Nutr 68(8):925–930. https://doi.org/10.1038/ejcn.2014.99

    Article  CAS  PubMed  Google Scholar 

  30. Stang A (2010) Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol 25(9):603–605. https://doi.org/10.1007/s10654-010-9491-z

    Article  PubMed  Google Scholar 

  31. Guyatt GH, Oxman AD, Vist GE, Kunz R, Falck-Ytter Y, Alonso-Coello P, Schünemann HJ (2008) GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. BMJ 336(7650):924–926. https://doi.org/10.1136/bmj.39489.470347.AD

    Article  PubMed  PubMed Central  Google Scholar 

  32. Hamling J, Lee P, Weitkunat R, Ambuhl M (2008) Facilitating meta-analyses by deriving relative effect and precision estimates for alternative comparisons from a set of estimates presented by exposure level or disease category. Stat Med 27(7):954–970. https://doi.org/10.1002/sim.3013

    Article  PubMed  Google Scholar 

  33. Bodnar LM, Catov JM, Zmuda JM, Cooper ME, Parrott MS, Roberts JM, Marazita ML, Simhan HN (2010) Maternal serum 25-hydroxyvitamin D concentrations are associated with small-for-gestational age births in white women. J Nutr 140(5):999–1006. https://doi.org/10.3945/jn.109.119636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. DerSimonian R, Laird N (2015) Meta-analysis in clinical trials revisited. Contemp Clin Trials 45(Pt A):139–145. https://doi.org/10.1016/j.cct.2015.09.002

    Article  PubMed  PubMed Central  Google Scholar 

  35. Higgins JP, Thompson SG (2002) Quantifying heterogeneity in a meta-analysis. Stat Med 21(11):1539–1558. https://doi.org/10.1002/sim.1186

    Article  PubMed  Google Scholar 

  36. Higgins JP, Thompson SG, Deeks JJ, Altman DG (2003) Measuring inconsistency in meta-analyses. BMJ 327(7414):557–560. https://doi.org/10.1136/bmj.327.7414.557

    Article  PubMed  PubMed Central  Google Scholar 

  37. Thompson SG, Higgins JP (2002) How should meta-regression analyses be undertaken and interpreted? Stat Med 21(11):1559–1573. https://doi.org/10.1002/sim.1187

    Article  PubMed  Google Scholar 

  38. Egger M, Davey Smith G, Schneider M, Minder C (1997) Bias in meta-analysis detected by a simple, graphical test. BMJ 315(7109):629–634. https://doi.org/10.1136/bmj.315.7109.629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Greenland S, Longnecker MP (1992) Methods for trend estimation from summarized dose-response data, with applications to meta-analysis. Am J Epidemiol 135(11):1301–1309. https://doi.org/10.1093/oxfordjournals.aje.a116237

    Article  CAS  PubMed  Google Scholar 

  40. Desquilbet L, Mariotti F (2010) Dose-response analyses using restricted cubic spline functions in public health research. Stat Med 29(9):1037–1057. https://doi.org/10.1002/sim.3841

    Article  PubMed  Google Scholar 

  41. Orsini N, Li R, Wolk A, Khudyakov P, Spiegelman D (2012) Meta-analysis for linear and nonlinear dose-response relations: examples, an evaluation of approximations, and software. Am J Epidemiol 175(1):66–73. https://doi.org/10.1093/aje/kwr265

    Article  PubMed  Google Scholar 

  42. Bagnardi V, Zambon A, Quatto P, Corrao G (2004) Flexible meta-regression functions for modeling aggregate dose-response data, with an application to alcohol and mortality. Am J Epidemiol 159(11):1077–1086. https://doi.org/10.1093/aje/kwh142

    Article  PubMed  Google Scholar 

  43. Yang W, Jiao M, Xi L, Han N, Luo S, Xu X, Zhou Q, Wang H (2021) The association between maternal fat-soluble vitamin concentrations during pregnancy and infant birth weight in China. Br J Nutr 125(9):1058–1066. https://doi.org/10.1017/S0007114520003347

    Article  CAS  PubMed  Google Scholar 

  44. Rostami M, Simbar M, Amiri M, Bidhendi-Yarandi R, Hosseinpanah F, Ramezani Tehrani F (2020) The optimal cut-off point of vitamin D for pregnancy outcomes using a generalized additive model. Clin Nutr 40(4):2145–2153. https://doi.org/10.1016/j.clnu.2020.09.039

    Article  CAS  PubMed  Google Scholar 

  45. Li H, Ma J, Huang R, Wen Y, Liu G, Xuan M, Yang L, Yang J, Song L (2020) Prevalence of vitamin D deficiency in the pregnant women: an observational study in Shanghai. China Arch Public Health 78:31. https://doi.org/10.1186/s13690-020-00414-1

    Article  PubMed  Google Scholar 

  46. Kalok A, Aziz NHA, Malik DA, Shah SA, Nasuruddin DN, Omar MH, Ismail NAM, Shafiee MN (2020) Maternal serum Vitamin D and spontaneous preterm birth. Clin Exp Obstet Gynecol 47(1):16–20

    Article  Google Scholar 

  47. Chen GD, Pang TT, Li PS, Zhou ZX, Lin DX, Fan DZ, Guo XL, Liu ZP (2020) Early pregnancy vitamin D and the risk of adverse maternal and infant outcomes: a retrospective cohort study. BMC Pregnancy Childbirth 20(1):465. https://doi.org/10.1186/s12884-020-03158-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Abd Aziz NH, Yazid NA, Abd Rahman R, Abd Rashid N, Wong SK, Mohamad NV, Lim PS, Chin KY (2020) Is first trimester maternal 25-hydroxyvitamin d level related to adverse maternal and neonatal pregnancy outcomes? A prospective cohort study among Malaysian women. Int J Environ Res Public Health 17(9):3291. https://doi.org/10.3390/ijerph17093291

    Article  CAS  PubMed Central  Google Scholar 

  49. Yu L, Guo Y, Ke HJ, He YS, Che D, Wu JL (2019) Vitamin D status in pregnant women in southern China and risk of preterm birth: a large-scale retrospective cohort study. Med Sci Monit 25:7755–7762

    Article  CAS  Google Scholar 

  50. Thiele DK, Erickson EN, Snowden JM (2019) High prevalence of maternal serum 25-hydroxyvitamin D deficiency is not associated with poor birth outcomes among healthy white women in the Pacific Northwest. J Obstet Gynecol Neonatal Nurs 48(2):163–175. https://doi.org/10.1016/j.jogn.2019.01.001

    Article  PubMed  Google Scholar 

  51. Shakir N, Al-Hilli AS, Saffa AH (2019) Early pregnancy Vitamin D deficiency and risk of preterm Birth. Ann Trop Med Public Health. https://doi.org/10.36295/ASRO.2019.22043

    Article  Google Scholar 

  52. Öcal DF, Aycan Z, Dağdeviren G, Kanbur N, Küçüközkan T, Derman O (2019) Vitamin D deficiency in adolescent pregnancy and obstetric outcomes. Taiwan J Obstet Gynecol 58(6):778–783. https://doi.org/10.1016/j.tjog.2019.09.008

    Article  PubMed  Google Scholar 

  53. Hajianfar H, Esmailzadeh A, Feizi A, Shahshahan Z, Azadbakht L (2019) Association of maternal serum vitamin D Level with risk of pregnancy-related complications and neonatal anthropometric measures: a prospective observational study. Int J Prev Med 10:208. https://doi.org/10.4103/ijpvm.IJPVM_543_17

    Article  PubMed  PubMed Central  Google Scholar 

  54. Fallatah AM, Bahrawi AJ, Babatin H, Nassibi KM, AlEdreesi Y, Abduljabbar HS (2019) Pregnancy outcomes among obese pregnant women with varying levels of vitamin D in King Abdulaziz University Hospital: a single-center retrospective study. Cureus 11(11):e6220. https://doi.org/10.7759/cureus.6220

    Article  PubMed  PubMed Central  Google Scholar 

  55. Balogun H, Jaakkola JJK, Amegah AK (2019) Association of sunlight exposure and consumption of vitamin D-rich foods during pregnancy with adverse birth outcomes in an African population. J Trop Pediatr 65(6):526–536. https://doi.org/10.1093/tropej/fmz001

    Article  PubMed  Google Scholar 

  56. Yang L, Song L, Xu X, Liu Y, Li H, Tang L (2018) Prevalence of vitamin D deficiency during second trimester of pregnancy in Shanghai China, risk factors and effects on pregnancy outcomes. Iran J Public Health 47(8):1145–1150

    PubMed  PubMed Central  Google Scholar 

  57. Wilson RL, Leviton AJ, Leemaqz SY, Anderson PH, Grieger JA, Grzeskowiak LE, Verburg PE, McCowan L, Dekker GA, Bianco-Miotto T, Roberts CT (2018) Vitamin D levels in an Australian and New Zealand cohort and the association with pregnancy outcome. BMC Pregnancy Childbirth 18(1):251. https://doi.org/10.1186/s12884-018-1887-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wang Y, Li H, Zheng M, Wu Y, Zeng T, Fu J, Zeng D (2018) Maternal Vitamin D deficiency increases the risk of adverse neonatal outcomes in the Chinese population: A prospective cohort study. PLoS ONE 13(4):e0195700. https://doi.org/10.1371/journal.pone.0195700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wang H, Xiao Y, Zhang L, Gao Q (2018) Maternal early pregnancy vitamin D status in relation to low birth weight and small-for-gestational-age offspring. J Steroid Biochem Mol Biol 175:146–150. https://doi.org/10.1016/j.jsbmb.2017.09.010

    Article  CAS  PubMed  Google Scholar 

  60. Khan FR, Ahmad T, Hussain R, Bhutta ZA (2018) Relationship among Hypovitaminosis D, Maternal Periodontal Disease, and Low Birth Weight. J Coll Physicians Surg Pak 28(1):36–39

    Article  Google Scholar 

  61. Hemmingway A, Kenny LC, Malvisi L, Kiely ME (2018) Exploring the concept of functional Vitamin D deficiency in pregnancy: impact of the interaction between 25-hydroxyVitamin D and parathyroid hormone on perinatal outcomes. Am J Clin Nutr 108(4):821–829. https://doi.org/10.1093/ajcn/nqy150

    Article  PubMed  Google Scholar 

  62. Chen YH, Fu L, Hao JH, Wang H, Zhang C, Tao FB, Xu DX (2018) Influent factors of gestational vitamin D deficiency and its relation to an increased risk of preterm delivery in Chinese population. Sci Rep 8(1):3608. https://doi.org/10.1038/s41598-018-21944-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Bärebring L, Bullarbo M, Glantz A, Hulthén L, Ellis J, Jagner Å, Schoenmakers I, Winkvist A, Augustin H (2018) Trajectory of vitamin D status during pregnancy in relation to neonatal birth size and fetal survival: a prospective cohort study. BMC Pregnancy Childbirth 18(1):51. https://doi.org/10.1186/s12884-018-1683-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. McDonnell SL, Baggerly KA, Baggerly CA, Aliano JL, French CB, Baggerly LL, Ebeling MD, Rittenberg CS, Goodier CG, Nino JFM, Wineland RJ, Newman RB, Hollis BW, Wagner CL (2017) Maternal 25(OH)D concentrations >= 40 ng/mL associated with 60% lower preterm birth risk among general obstetrical patients at an urban medical center. PLoS ONE 12(7):e0180483. https://doi.org/10.1371/journal.pone.0180483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lee CL, Ng BK, Wu LL, Cheah FC, Othman H, Ismail NAM (2017) Vitamin D deficiency in pregnancy at term: risk factors and pregnancy outcomes. Horm Mol Biol Clin Investig. https://doi.org/10.1515/hmbci-2017-0005

    Article  PubMed  Google Scholar 

  66. Jao J, Freimanis L, Mussi-Pinhata MM, Cohen RA, Monteiro JP, Cruz ML, Branch A, Sperling RS, Siberry GK (2017) Severe Vitamin d deficiency in human immunodeficiency virus-infected pregnant women is associated with preterm birth. Am J Perinatol 34(5):486–492. https://doi.org/10.1055/s-0036-1593536

    Article  PubMed  Google Scholar 

  67. Gernand AD, Simhan HN, Baca KM, Caritis S, Bodnar LM (2017) Vitamin D, pre-eclampsia, and preterm birth among pregnancies at high risk for pre-eclampsia: an analysis of data from a low-dose aspirin trial. BJOG 124(12):1874–1882. https://doi.org/10.1111/1471-0528.14372

    Article  CAS  PubMed  Google Scholar 

  68. Gbadegesin A, Sobande A, Adedeji O, Disu E, Korede O, Dosunmu A, Shakunle A (2017) Maternal serum vitamin D levels and pregnancy outcomes: from Lagos. Nigeria J Obstet Gynaecol 37(1):25–28. https://doi.org/10.1080/01443615.2016.1196483

    Article  CAS  PubMed  Google Scholar 

  69. Weinert LS, Reichelt AJ, Schmitt LR, Boff R, Oppermann MLR, Camargo JL, Silveiro SP (2016) Vitamin D deficiency increases the risk of adverse neonatal outcomes in gestational diabetes. PLoS ONE 11(10):e0164999. https://doi.org/10.1371/journal.pone.0164999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Toko EN, Sumba OP, Daud II, Ogolla S, Majiwa M, Krisher JT, Ouma C, Dent AE, Rochford R, Mehta S (2016) Maternal vitamin D status and adverse birth outcomes in children from Rural Western Kenya. Nutrients 8(12):794. https://doi.org/10.3390/nu8120794

    Article  CAS  PubMed Central  Google Scholar 

  71. Miliku K, Vinkhuyzen A, Blanken LM, McGrath JJ, Eyles DW, Burne TH, Hofman A, Tiemeier H, Steegers EA, Gaillard R, Jaddoe VW (2016) Maternal vitamin D concentrations during pregnancy, fetal growth patterns, and risks of adverse birth outcomes. Am J Clin Nutr 103(6):1514–1522. https://doi.org/10.3945/ajcn.115.123752

    Article  CAS  PubMed  Google Scholar 

  72. Boyle VT, Thorstensen EB, Mourath D, Jones MB, McCowan LME, Kenny LC, Baker PN (2016) The relationship between 25-hydroxyvitamin D concentration in early pregnancy and pregnancy outcomes in a large, prospective cohort. Br J Nutr 116(8):1409–1415. https://doi.org/10.1017/S0007114516003202

    Article  CAS  PubMed  Google Scholar 

  73. Ates S, Sevket O, Ozcan P, Ozkal F, Kaya MO, Dane B (2016) Vitamin D status in the first-trimester: effects of vitamin D deficiency on pregnancy outcomes. Afr Health Sci 16(1):36–43. https://doi.org/10.4314/ahs.v16i1.5

    Article  PubMed  PubMed Central  Google Scholar 

  74. Ajmani SN, Paul M, Chauhan P, Ajmani AK, Yadav N (2016) Prevalence of Vitamin D deficiency in burka-clad pregnant women in a 450-bedded maternity hospital of Delhi. J Obstet Gynaecol India 66:67–71. https://doi.org/10.1007/s13224-015-0764-z

    Article  CAS  PubMed  Google Scholar 

  75. Zhu T, Liu TJ, Ge X, Kong J, Zhang LJ, Zhao Q (2015) High prevalence of maternal vitamin D deficiency in preterm births in northeast China. Shenyang Int J Clin Exp Pathol 8(2):1459–1465

    PubMed  Google Scholar 

  76. Wagner CL, Baggerly C, McDonnell SL, Baggerly L, Hamilton SA, Winkler J, Warner G, Rodriguez C, Shary JR, Smith PG, Hollis BW (2015) Post-hoc comparison of vitamin D status at three timepoints during pregnancy demonstrates lower risk of preterm birth with higher vitamin D closer to delivery. J Steroid Biochem Mol Biol 148:256–260. https://doi.org/10.1016/j.jsbmb.2014.11.013

    Article  CAS  PubMed  Google Scholar 

  77. Rodriguez A, García-Esteban R, Basterretxea M, Lertxundi A, Rodríguez-Bernal C, Iñiguez C, Rodriguez-Dehli C, Tardõn A, Espada M, Sunyer J, Morales E (2015) Associations of maternal circulating 25-hydroxyvitamin D3 concentration with pregnancy and birth outcomes. BJOG 122(12):1695–1704. https://doi.org/10.1111/1471-0528.13074

    Article  CAS  PubMed  Google Scholar 

  78. Nobles CJ, Markenson G, Chasan-Taber L (2015) Early pregnancy Vitamin D status and risk for adverse maternal and infant outcomes in a bi-ethnic cohort: the Behaviors Affecting Baby and You (B.A.B.Y.) Study. Br J Nutr 114(12):2116–2128. https://doi.org/10.1017/S0007114515003980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Flood-Nichols SK, Tinnemore D, Huang RR, Napolitano PG, Ippolito DL (2015) Vitamin D deficiency in early pregnancy. PLoS ONE 10(4):e0123763. https://doi.org/10.1371/journal.pone.0123763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Davies-Tuck M, Yim C, Knight M, Hodges R, Doery JCG, Wallace E (2015) Vitamin D testing in pregnancy: does one size fit all? Aust N Z J Obstet Gynaecol 55(2):149–155. https://doi.org/10.1111/ajo.12278

    Article  PubMed  Google Scholar 

  81. Aydogmus S, Kelekci S, Aydogmus H, Eriş S, Desdicioʇlu R, Yilmaz B, Saʇlam G (2015) High prevalence of vitamin D deficiency among pregnant women in a Turkish population and impact on perinatal outcomes. J Matern Fetal Neonatal Med 28(15):1828–1832. https://doi.org/10.3109/14767058.2014.969235

    Article  CAS  PubMed  Google Scholar 

  82. Scholl TO, Chen X, Stein TP (2014) Maternal calcium metabolic stress and fetal growth. Am J Clin Nutr 99(4):918–925. https://doi.org/10.3945/ajcn.113.076034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Gernand AD, Simhan HN, Caritis S, Bodnar LM (2014) Maternal vitamin D status and small-for-gestational-age offspring in women at high risk for preeclampsia. Obstet Gynecol 123(1):40–48. https://doi.org/10.1097/AOG.0000000000000049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Bomba-Opon DA, Brawura-Biskupski-Samaha R, Kozlowski S, Kosinski P, Bartoszewicz Z, Bednarczuk T, Wielgos M (2014) First trimester maternal serum vitamin D and markers of preeclampsia. J Matern Fetal Neonatal Med 27(10):1078–1079. https://doi.org/10.3109/14767058.2013.846318

    Article  CAS  PubMed  Google Scholar 

  85. Gernand AD, Simhan HN, Klebanoff MA, Bodnar LM (2013) Maternal serum 25-hydroxyvitamin D and measures of newborn and placental weight in a U.S. multicenter cohort study. J Clin Endocrinol Metab 98(1):398–404. https://doi.org/10.1210/jc.2012-3275

    Article  CAS  PubMed  Google Scholar 

  86. Perez-Ferre N, Torrejon MJ, Fuentes M, Fernandez MD, Ramos A, Bordiu E, Del Valle L, Rubio MA, Bedia AR, Montañez C, Calle-Pascual AL (2012) Association of low serum 25-hydroxyvitamin D levels in pregnancy with glucose homeostasis and obstetric and newborn outcomes. Endocr Pract 18(5):676–684. https://doi.org/10.4158/EP12025.OR

    Article  PubMed  Google Scholar 

  87. Fernandez-Alonso AM, Dionis-Sanchez EC, Chedraui P, Gonzalez-Salmeron MD, Perez-Lopez FR (2012) First-trimester maternal serum 25-hydroxyvitamin D-3 status and pregnancy outcome. Int J Gynecol Obstet 116(1):6–9. https://doi.org/10.1016/j.ijgo.2011.07.029

    Article  CAS  Google Scholar 

  88. Burris HH, Rifas-Shiman SL, Camargo CA Jr, Litonjua AA, Huh SY, Rich-Edwards JW, Gillman MW (2012) Plasma 25-hydroxyvitamin D during pregnancy and small-for-gestational age in black and white infants. Ann Epidemiol 22(8):581–586. https://doi.org/10.1016/j.annepidem.2012.04.015

    Article  PubMed  PubMed Central  Google Scholar 

  89. Shand AW, Nassar N, Von Dadelszen P, Innis SM, Green TJ (2010) Maternal vitamin D status in pregnancy and adverse pregnancy outcomes in a group at high risk for pre-eclampsia. BJOG 117(13):1593–1598. https://doi.org/10.1111/j.1471-0528.2010.02742.x

    Article  CAS  PubMed  Google Scholar 

  90. Leffelaar ER, Vrijkotte TG, van Eijsden M (2010) Maternal early pregnancy vitamin D status in relation to fetal and neonatal growth: results of the multi-ethnic Amsterdam born children and their development cohort. Br J Nutr 104(1):108–117. https://doi.org/10.1017/s000711451000022x

    Article  CAS  PubMed  Google Scholar 

  91. Yadama AP, Mirzakhani H, McElrath TF, Litonjua AA, Weiss ST (2020) Transcriptome analysis of early pregnancy vitamin D status and spontaneous preterm birth. PLoS ONE 15(1):e0227193. https://doi.org/10.1371/journal.pone.0227193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Bozdag H, Akdeniz E (2020) Does severe vitamin D deficiency impact obstetric outcomes in pregnant women with thyroid autoimmunity? J Matern Fetal Neonatal Med 33(8):1359–1369. https://doi.org/10.1080/14767058.2018.1519017

    Article  CAS  PubMed  Google Scholar 

  93. Alimohamadi S, Esna-Ashari F, Rooy RSB (2020) Relationship of vitamin D serum level with intrauterine growth retardation in pregnant women. Int J Women’s Health Reprod Sci 8(2):221–226

    Article  CAS  Google Scholar 

  94. Kalinjuma AV, Darling AM, Sudfeld CR, Mugusi F, Wright J, Abioye AI, Aboud S, McDonald C, Hertzmark E, Kain KC, Fawzi WW (2019) Vitamin D concentration during early pregnancy and adverse outcomes among HIV-negative women in dar-es-salaam, tanzania: a case-control study. Nutrients 11(12):2906. https://doi.org/10.3390/nu11122906

    Article  PubMed Central  Google Scholar 

  95. Wen J, Kang C, Wang J, Cui X, Hong Q, Wang X, Zhu L, Xu P, Fu Z, You L, Wang X, Ji C, Guo X (2018) Association of maternal serum 25-hydroxyvitamin D concentrations in second and third trimester with risk of macrosomia. Sci Rep 8(1):6169. https://doi.org/10.1038/s41598-018-24534-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Wen J, Hong Q, Zhu L, Xu P, Fu Z, Cui X, You L, Wang X, Wu T, Ding H, Dai Y, Ji C, Guo X (2017) Association of maternal serum 25-hydroxyvitamin D concentrations in second and third trimester with risk of gestational diabetes and other pregnancy outcomes. Int J Obes 41(4):489–496. https://doi.org/10.1038/ijo.2016.227

    Article  CAS  Google Scholar 

  97. Tabatabaei N, Auger N, Herba CM, Wei S, Allard C, Fink GD, Fraser WD (2017) Maternal vitamin D insufficiency early in pregnancy is associated with increased risk of preterm birth in ethnic minority women in Canada. J Nutr 147(6):1145–1151. https://doi.org/10.3945/jn.116.241216

    Article  CAS  PubMed  Google Scholar 

  98. Yang L, Pan S, Zhou Y, Wang X, Qin A, Huang Y, Sun S (2016) The Correlation between serum vitamin D deficiency and preterm birth. Med Sci Monit 22:4401–4405

    Article  CAS  Google Scholar 

  99. Wetta LA, Biggio JR, Cliver S, Abramovici A, Barnes S, Tita ATN (2014) Is midtrimester vitamin D status associated with spontaneous preterm birth and preeclampsia? Am J Perinatol 31(6):541–546. https://doi.org/10.1055/s-0033-1356483

    Article  PubMed  Google Scholar 

  100. Schneuer FJ, Roberts CL, Guilbert C, Simpson JM, Algert CS, Khambalia AZ, Tasevski V, Ashton AW, Morris JM, Nassar N (2014) Effects of maternal serum 25-hydroxyvitamin D concentrations in the first trimester on subsequent pregnancy outcomes in an Australian population1-3. Am J Clin Nutr 99(2):287–295. https://doi.org/10.3945/ajcn.113.065672

    Article  CAS  PubMed  Google Scholar 

  101. Thorp JM, Camargo CA, McGee PL, Harper M, Klebanoff MA, Sorokin Y, Varner MW, Wapner RJ, Caritis SN, Iams JD, Carpenter MW, Peaceman AM, Mercer BM, Sciscione A, Rouse DJ, Ramin SM, Anderson GB (2012) Vitamin D status and recurrent preterm birth: a nested case-control study in high-risk women. BJOG 119(13):1617–1623. https://doi.org/10.1111/j.1471-0528.2012.03495.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Ertl R, Yu CKH, Samaha R, Akolekar R, Nicolaides KH (2012) Maternal serum vitamin D at 11–13 weeks in pregnancies delivering small for gestational age neonates. Fetal Diagn Ther 31(2):103–108. https://doi.org/10.1159/000333810

    Article  PubMed  Google Scholar 

  103. Dunlop AL, Taylor RN, Tangpricha V, Fortunato S, Menon R (2012) Maternal micronutrient status and preterm versus term birth for black and white US women. Reprod Sci 19(9):939–948. https://doi.org/10.1177/1933719112438442

    Article  PubMed  PubMed Central  Google Scholar 

  104. Baker AM, Haeri S, Camargo CA Jr, Stuebe AM, Boggess KA (2011) A nested case-control study of first-trimester maternal vitamin D status and risk for spontaneous preterm birth. Am J Perinatol 28(9):667–672. https://doi.org/10.1055/s-0031-1276731

    Article  PubMed  PubMed Central  Google Scholar 

  105. Bodnar LM, Platt RW, Simhan HN (2015) Early-pregnancy vitamin D deficiency and risk of preterm birth subtypes. Obstet Gynecol 125(2):439–447. https://doi.org/10.1097/aog.0000000000000621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Wise SA, Camara JE, Sempos CT, Lukas P, Le Goff C, Peeters S, Burdette CQ, Nalin F, Hahm G, Durazo-Arvizu RA, Kuszak AJ, Merkel J, Cavalier É (2021) Vitamin D Standardization Program (VDSP) intralaboratory study for the assessment of 25-hydroxyvitamin D assay variability and bias. J Steroid Biochem Mol Biol 212:105917. https://doi.org/10.1016/j.jsbmb.2021.105917

    Article  CAS  PubMed  Google Scholar 

  107. Carter GD, Berry J, Durazo-Arvizu R, Gunter E, Jones G, Jones J, Makin HLJ, Pattni P, Phinney KW, Sempos CT, Williams EL (2017) Quality assessment of vitamin D metabolite assays used by clinical and research laboratories. J Steroid Biochem Mol Biol 173:100–104. https://doi.org/10.1016/j.jsbmb.2017.03.010

    Article  CAS  PubMed  Google Scholar 

  108. Durazo-Arvizu RA, Dawson-Hughes B, Kramer H, Cao G, Merkel J, Coates PM, Sempos CT (2017) The Reverse J-Shaped Association Between Serum Total 25-Hydroxyvitamin D Concentration and All-Cause Mortality: The Impact of Assay Standardization. Am J Epidemiol 185(8):720–726. https://doi.org/10.1093/aje/kww244

    Article  PubMed  PubMed Central  Google Scholar 

  109. Binkley N, Dawson-Hughes B, Durazo-Arvizu R, Thamm M, Tian L, Merkel JM, Jones JC, Carter GD, Sempos CT (2017) Vitamin D measurement standardization: The way out of the chaos. J Steroid Biochem Mol Biol 173:117–121. https://doi.org/10.1016/j.jsbmb.2016.12.002

    Article  CAS  PubMed  Google Scholar 

  110. Gaksch M, Jorde R, Grimnes G, Joakimsen R, Schirmer H, Wilsgaard T, Mathiesen EB, Njølstad I, Løchen ML, März W, Kleber ME, Tomaschitz A, Grübler M, Eiriksdottir G, Gudmundsson EF, Harris TB, Cotch MF, Aspelund T, Gudnason V, Rutters F, Beulens JW, van’t Riet E, Nijpels G, Dekker JM, Grove-Laugesen D, Rejnmark L, Busch MA, Mensink GB, Scheidt-Nave C, Thamm M, Swart KM, Brouwer IA, Lips P, van Schoor NM, Sempos CT, Durazo-Arvizu RA, Škrabáková Z, Dowling KG, Cashman KD, Kiely M, Pilz S (2017) Vitamin D and mortality: individual participant data meta-analysis of standardized 25-hydroxyvitamin D in 26916 individuals from a European consortium. PLoS ONE 12(2):e0170791. https://doi.org/10.1371/journal.pone.0170791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Santamaria C, Bi WG, Leduc L, Tabatabaei N, Jantchou P, Luo ZC, Audibert F, Nuyt AM, Wei SQ (2018) Prenatal vitamin D status and offspring’s growth, adiposity and metabolic health: a systematic review and meta-analysis. Br J Nutr 119(3):310–319. https://doi.org/10.1017/S0007114517003646

    Article  CAS  PubMed  Google Scholar 

  112. Hu Z, Tang L, Xu HL (2018) Maternal vitamin D deficiency and the risk of small for gestational age: a meta-analysis. Iran J Public Health 47(12):1785–1795

    PubMed  PubMed Central  Google Scholar 

  113. Chen Y, Zhu B, Wu X, Li S, Tao F (2017) Association between maternal vitamin D deficiency and small for gestational age: evidence from a meta-analysis of prospective cohort studies. BMJ Open 7(8):e016404. https://doi.org/10.1136/bmjopen-2017-016404

    Article  PubMed  PubMed Central  Google Scholar 

  114. Urrutia-Pereira M, Sole D (2015) Vitamin D deficiency in pregnancy and its impact on the fetus, the newborn and in childhood. Rev Paul Pediatr 33(1):104–113. https://doi.org/10.1016/j.rpped.2014.05.004

    Article  PubMed  PubMed Central  Google Scholar 

  115. Viljakainen HT, Saarnio E, Hytinantti T, Miettinen M, Surcel H, Makitie O, Andersson S, Laitinen K, Lamberg-Allardt C (2010) Maternal vitamin D status determines bone variables in the newborn. J Clin Endocrinol Metab 95(4):1749–1757. https://doi.org/10.1210/jc.2009-1391

    Article  CAS  PubMed  Google Scholar 

  116. Kovacs CS (2014) Bone metabolism in the fetus and neonate. Pediatr Nephrol 29(5):793–803. https://doi.org/10.1007/s00467-013-2461-4

    Article  PubMed  Google Scholar 

  117. Bogazzi F, Rossi G, Lombardi M, Tomisti L, Sardella C, Manetti L, Curzio O, Marcocci C, Grasso L, Gasperi M, Martino E (2011) Vitamin D status may contribute to serum insulin-like growth factor I concentrations in healthy subjects. J Endocrinol Invest 34(8):e200-203. https://doi.org/10.3275/7228

    Article  CAS  PubMed  Google Scholar 

  118. Mor G, Cardenas I, Abrahams V, Guller S (2011) Inflammation and pregnancy: the role of the immune system at the implantation site. Ann N Y Acad Sci 1221(1):80–87. https://doi.org/10.1111/j.1749-6632.2010.05938.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Pan X, Jin X, Wang J, Hu Q, Dai B (2021) Placenta inflammation is closely associated with gestational diabetes mellitus. Am J Transl Res 13(5):4068–4079

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Farhangi MA, Mesgari-Abbasi M, Hajiluian G, Nameni G, Shahabi P (2017) Adipose tissue inflammation and oxidative stress: the ameliorative effects of vitamin D. Inflammation 40(5):1688–1697. https://doi.org/10.1007/s10753-017-0610-9

    Article  CAS  PubMed  Google Scholar 

  121. Ji JL, Muyayalo KP, Zhang YH, Hu XH, Liao AH (2017) Immunological function of vitamin D during human pregnancy. Am J Reprod Immunol. https://doi.org/10.1111/aji.12716

    Article  PubMed  Google Scholar 

  122. Evans KN, Bulmer JN, Kilby MD, Hewison M (2004) Vitamin D and placental-decidual function. J Soc Gynecol Investig 11(5):263–271. https://doi.org/10.1016/j.jsgi.2004.02.002

    Article  CAS  PubMed  Google Scholar 

  123. Nguyen TP, Yong HE, Chollangi T, Borg AJ, Brennecke SP, Murthi P (2015) Placental vitamin D receptor expression is decreased in human idiopathic fetal growth restriction. J Mol Med (Berl) 93(7):795–805. https://doi.org/10.1007/s00109-015-1267-1

    Article  CAS  Google Scholar 

  124. de Haas S, Ghossein-Doha C, van Kuijk SM, van Drongelen J, Spaanderman ME (2017) Physiological adaptation of maternal plasma volume during pregnancy: a systematic review and meta-analysis. Ultrasound Obstet Gynecol 49(2):177–187. https://doi.org/10.1002/uog.17360

    Article  PubMed  Google Scholar 

  125. Takaoka N, Nishida K, Sairenchi T, Umesawa M, Noguchi R, Someya K, Kobashi G (2020) Changes in vitamin D status considering hemodilution factors in Japanese pregnant women according to trimester: a longitudinal survey. PLoS ONE 15(10):e0239954. https://doi.org/10.1371/journal.pone.0239954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank all members of our research team for their engagement and the original authors of the included studies for their excellent work.

Funding

This research was supported by the National Natural Science Foundation of China (LH, No.81773426, No. 82173513) and the Joint Foundation of the Health Commission of Hubei Province (HY, WJ2018H0139).

Author information

Authors and Affiliations

Authors

Contributions

RZ and LH designed the study; RZ, SW, and LZ researched the databases; RZ, LZ, and SW collected data; RZ and LZ analyzed the data; RZ drafted the manuscript; HY, XY, and LH critically revised the manuscript. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Liping Hao.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethics approval

Each participating study has been approved by the local ethic committee.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2569 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, R., Zhou, L., Wang, S. et al. Effect of maternal vitamin D status on risk of adverse birth outcomes: a systematic review and dose–response meta-analysis of observational studies. Eur J Nutr 61, 2881–2907 (2022). https://doi.org/10.1007/s00394-022-02866-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-022-02866-3

Keywords

Navigation