Skip to main content

Advertisement

Log in

Cumulative average nut consumption in relation to lower incidence of hypertension: a prospective cohort study of 10,347 adults

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

Maintaining optimal blood pressure (BP) levels can be an effective preventive strategy for reducing disease burden. Nut consumption may play a preventive role against hypertension, which is a lifelong condition. We aimed to prospectively examine the association between cumulative average nut consumption and the incidence of hypertension in Korean adults aged 40 years and older.

Methods

A total of 10,347 participants who were free of hypertension at baseline, were included. Hypertension was defined as having a physician diagnosis and taking antihypertensive medications or having abnormal BP (systolic ≥ 140 mmHg or diastolic ≥ 90 mmHg). As an exposure, cumulative average nut consumption was calculated using repeated food-frequency questionnaires (mean: 2.1). We used a modified Poisson regression model with a robust error estimator to estimate the incidence rate ratios (IRRs) with 95% confidence intervals (CIs) for hypertension.

Results

We identified 2047 incident cases of hypertension during 44,614 person-years of follow-up. Among both men and women, an average nut consumption of ≥ 1 serving/week (15 g/week]) was inversely associated with hypertension incidence (IRR = 0.74, 95% CI = 0.58–0.96, p for trend = 0.013 for men; IRR = 0.72, 95% CI = 0.59–0.88, p for trend = 0.002 for women) and these significant associations were consistently observed across the strata of potential confounders.

Conclusion

An average consumption of at least one serving (15 g) per week of peanuts, almonds, and/or pine nuts may be inversely associated with the risk of hypertension among Korean adults aged 40 years and older, in a dose–response manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BP:

Blood pressure

BMI:

Body mass index

CAVAS:

Cardiovascular disease association study

CI:

Confidence interval

DALY:

Disability-adjusted life-years

DASH:

Dietary approaches to stop hypertension

DBP:

Diastolic blood pressure

FFQ:

Food frequency questionnaire

GLM:

General linear model

IRR:

Incidence rate ratio

KoGES:

Korean genome and epidemiology study

RCT:

Randomized controlled trial

SBP:

Systolic blood pressure

SD:

Standard deviation

SE:

Standard error

References

  1. Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo JL Jr, Jones DW, Materson BJ, Oparil S, Wright JT Jr, Roccella EJ (2003) The seventh report of the joint national committee on prevention, detection, evaluation, and treatment of high blood pressure: the JNC 7 report. JAMA 289:2560–2572. https://doi.org/10.1001/jama.289.19.2560

    Article  CAS  PubMed  Google Scholar 

  2. World Health Organization. A global brief on hypertension: silent killer, global public health crisis: World Health Day 2013 Geneva: World Health Organization. 2013. http://www.who.int/cardiovascular_diseases/publications/global_brief_hypertension/en/. Accessed 4 Oct 2020

  3. GBD2017RiskFactorCollaborators (2018) Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 392:1923–1994. https://doi.org/10.1016/s0140-6736(18)32225-6

  4. Forouzanfar MH, Liu P, Roth GA, Ng M, Biryukov S, Marczak L, Alexander L, Estep K, Hassen Abate K, Akinyemiju TF, Ali R, Alvis-Guzman N, Azzopardi P, Banerjee A, Barnighausen T, Basu A, Bekele T, Bennett DA, Biadgilign S, Catala-Lopez F, Feigin VL, Fernandes JC, Fischer F, Gebru AA, Gona P, Gupta R, Hankey GJ, Jonas JB, Judd SE, Khang YH, Khosravi A, Kim YJ, Kimokoti RW, Kokubo Y, Kolte D, Lopez A, Lotufo PA, Malekzadeh R, Melaku YA, Mensah GA, Misganaw A, Mokdad AH, Moran AE, Nawaz H, Neal B, Ngalesoni FN, Ohkubo T, Pourmalek F, Rafay A, Rai RK, Rojas-Rueda D, Sampson UK, Santos IS, Sawhney M, Schutte AE, Sepanlou SG, Shifa GT, Shiue I, Tedla BA, Thrift AG, Tonelli M, Truelsen T, Tsilimparis N, Ukwaja KN, Uthman OA, Vasankari T, Venketasubramanian N, Vlassov VV, Vos T, Westerman R, Yan LL, Yano Y, Yonemoto N, Zaki ME, Murray CJ (2017) Global burden of hypertension and systolic blood pressure of at least 110 to 115 mm Hg, 1990–2015. JAMA 317:165–182. https://doi.org/10.1001/jama.2016.19043

    Article  PubMed  Google Scholar 

  5. Olsen MH, Angell SY, Asma S, Boutouyrie P, Burger D, Chirinos JA, Damasceno A, Delles C, Gimenez-Roqueplo AP, Hering D, López-Jaramillo P, Martinez F, Perkovic V, Rietzschel ER, Schillaci G, Schutte AE, Scuteri A, Sharman JE, Wachtell K, Wang JG (2016) A call to action and a life course strategy to address the global burden of raised blood pressure on current and future generations: the Lancet Commission on hypertension. Lancet 388:2665–2712. https://doi.org/10.1016/s0140-6736(16)31134-5

    Article  PubMed  Google Scholar 

  6. Ndanuko RN, Tapsell LC, Charlton KE, Neale EP, Batterham MJ (2016) Dietary patterns and blood pressure in adults: a systematic review and meta-analysis of randomized controlled trials. Adv Nutr 7:76–89. https://doi.org/10.3945/an.115.009753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sacks FM, Appel LJ, Moore TJ, Obarzanek E, Vollmer WM, Svetkey LP, Bray GA, Vogt TM, Cutler JA, Windhauser MM, Lin PH, Karanja N (1999) A dietary approach to prevent hypertension: a review of the Dietary Approaches to Stop Hypertension (DASH) Study. Clin Cardiol 22:6–10. https://doi.org/10.1002/clc.4960221503

    Article  Google Scholar 

  8. Ros E (2010) Health benefits of nut consumption. Nutrients 2:652–682. https://doi.org/10.3390/nu2070652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Houston MC, Harper KJ (2008) Potassium, magnesium, and calcium: their role in both the cause and treatment of hypertension. J Clin Hypertens (Greenwich) 10:3–11. https://doi.org/10.1111/j.1751-7176.2008.08575.x

    Article  CAS  Google Scholar 

  10. Zhou D, Yu H, He F, Reilly KH, Zhang J, Li S, Zhang T, Wang B, Ding Y, Xi B (2014) Nut consumption in relation to cardiovascular disease risk and type 2 diabetes: a systematic review and meta-analysis of prospective studies. Am J Clin Nutr 100:270–277. https://doi.org/10.3945/ajcn.113.079152

    Article  CAS  PubMed  Google Scholar 

  11. Guo K, Zhou Z, Jiang Y, Li W, Li Y (2015) Meta-analysis of prospective studies on the effects of nut consumption on hypertension and type 2 diabetes mellitus. J Diabetes 7:202–212. https://doi.org/10.1111/1753-0407.12173

    Article  PubMed  Google Scholar 

  12. Djoussé L, Rudich T, Gaziano JM (2009) Nut consumption and risk of hypertension in US male physicians. Clin Nutr 28:10–14. https://doi.org/10.1016/j.clnu.2008.08.005

    Article  CAS  PubMed  Google Scholar 

  13. Martínez-Lapiscina EH, Pimenta AM, Beunza JJ, Bes-Rastrollo M, Martínez JA, Martínez-González MA (2010) Nut consumption and incidence of hypertension: the SUN prospective cohort. Nutr Metab Cardiovasc Dis 20:359–365. https://doi.org/10.1016/j.numecd.2009.04.013

    Article  PubMed  Google Scholar 

  14. Weng LC, Steffen LM, Szklo M, Nettleton J, Chambless L, Folsom AR (2013) A diet pattern with more dairy and nuts, but less meat is related to lower risk of developing hypertension in middle-aged adults: the Atherosclerosis Risk in Communities (ARIC) study. Nutrients 5:1719–1733. https://doi.org/10.3390/nu5051719

    Article  PubMed  PubMed Central  Google Scholar 

  15. Steffen LM, Kroenke CH, Yu X, Pereira MA, Slattery ML, Van Horn L, Gross MD, Jacobs DR Jr (2005) Associations of plant food, dairy product, and meat intakes with 15-y incidence of elevated blood pressure in young black and white adults: the Coronary Artery Risk Development in Young Adults (CARDIA) Study. Am J Clin Nutr 82:1169–1177; quiz 1363–1164. https://doi.org/10.1093/ajcn/82.6.1169

  16. Kim Y, Han BG (2017) Cohort profile: the Korean Genome and Epidemiology Study (KoGES) Consortium. Int J Epidemiol 46:1350. https://doi.org/10.1093/ije/dyx105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Parikh NI, Pencina MJ, Wang TJ, Benjamin EJ, Lanier KJ, Levy D, D’Agostino RB Sr, Kannel WB, Vasan RS (2008) A risk score for predicting near-term incidence of hypertension: the Framingham Heart Study. Ann Intern Med 148:102–110. https://doi.org/10.7326/0003-4819-148-2-200801150-00005

    Article  PubMed  Google Scholar 

  18. Ahn Y, Kwon E, Shim JE, Park MK, Joo Y, Kimm K, Park C, Kim DH (2007) Validation and reproducibility of food frequency questionnaire for Korean genome epidemiologic study. Eur J Clin Nutr 61:1435–1441. https://doi.org/10.1038/sj.ejcn.1602657

    Article  CAS  PubMed  Google Scholar 

  19. Higgs J (2003) The beneficial role of peanuts in the diet—part 2. Nutr Food Sci 33:56–64. https://doi.org/10.1108/00346650310466637

    Article  Google Scholar 

  20. Hu FB, Stampfer MJ, Rimm E, Ascherio A, Rosner BA, Spiegelman D, Willett WC (1999) Dietary fat and coronary heart disease: a comparison of approaches for adjusting for total energy intake and modeling repeated dietary measurements. Am J Epidemiol 149:531–540. https://doi.org/10.1093/oxfordjournals.aje.a009849

    Article  CAS  PubMed  Google Scholar 

  21. The Korean Nutrition Society. Food Values. Seoul, Korea: The Korean Nutrition Society; 2009.

  22. Fung TT, Chiuve SE, McCullough ML, Rexrode KM, Logroscino G, Hu FB (2008) Adherence to a DASH-style diet and risk of coronary heart disease and stroke in women. Arch Intern Med 168:713–720. https://doi.org/10.1001/archinte.168.7.713

    Article  PubMed  Google Scholar 

  23. Callas PW, Pastides H, Hosmer DW (1998) Empirical comparisons of proportional hazards, Poisson, and logistic regression modeling of occupational cohort data. Am J Ind Med 33:33–47. https://doi.org/10.1002/(sici)1097-0274(199801)33:1%3c33::aid-ajim5%3e3.0.co;2-x

    Article  CAS  PubMed  Google Scholar 

  24. Zou G (2004) A modified Poisson regression approach to prospective studies with binary data. Am J Epidemiol 159:702–706. https://doi.org/10.1093/aje/kwh090

    Article  PubMed  Google Scholar 

  25. Korea Health Industry Development Institute. National Food and Nutrition Statistics based on Korea National Health and Nutrition Examination Survey 2018 Cheongju, Korea: Korea Health Industry Development Institute; 2020. https://www.khidi.or.kr/kps/dhraStat/result2?menuId=MENU01653&gubun=age2&year=2018. Accessed 2 Feb 2021

  26. Micha R, Khatibzadeh S, Shi P, Andrews KG, Engell RE, Mozaffarian D (2015) Global, regional and national consumption of major food groups in 1990 and 2010: a systematic analysis including 266 country-specific nutrition surveys worldwide. BMJ Open 5:e008705. https://doi.org/10.1136/bmjopen-2015-008705

    Article  PubMed  PubMed Central  Google Scholar 

  27. Edwards DG, Farquhar WB (2015) Vascular effects of dietary salt. Curr Opin Nephrol Hypertens 24:8–13. https://doi.org/10.1097/mnh.0000000000000089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Palmer RM, Ashton DS, Moncada S (1988) Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature 333:664–666. https://doi.org/10.1038/333664a0

    Article  CAS  PubMed  Google Scholar 

  29. Sontia B, Touyz RM (2007) Role of magnesium in hypertension. Arch Biochem Biophys 458:33–39. https://doi.org/10.1016/j.abb.2006.05.005

    Article  CAS  PubMed  Google Scholar 

  30. Houston M (2014) The role of nutrition and nutraceutical supplements in the treatment of hypertension. World J Cardiol 6:38–66. https://doi.org/10.4330/wjc.v6.i2.38

    Article  PubMed  PubMed Central  Google Scholar 

  31. Das UN (2001) Nutritional factors in the pathobiology of human essential hypertension. Nutrition 17:337–346. https://doi.org/10.1016/s0899-9007(00)00586-4

    Article  CAS  PubMed  Google Scholar 

  32. Knox M, Vinet R, Fuentes L, Morales B, Martínez JL (2019) A review of endothelium-dependent and -independent vasodilation induced by phytochemicals in isolated rat aorta. Animals (Basel). https://doi.org/10.3390/ani9090623

    Article  Google Scholar 

  33. Eslampour E, Asbaghi O, Hadi A, Abedi S, Ghaedi E, Lazaridi AV, Miraghajani M (2020) The effect of almond intake on blood pressure: a systematic review and meta-analysis of randomized controlled trials. Complement Ther Med 50:102399. https://doi.org/10.1016/j.ctim.2020.102399

    Article  PubMed  Google Scholar 

  34. Mohammadifard N, Salehi-Abargouei A, Salas-Salvadó J, Guasch-Ferré M, Humphries K, Sarrafzadegan N (2015) The effect of tree nut, peanut, and soy nut consumption on blood pressure: a systematic review and meta-analysis of randomized controlled clinical trials. Am J Clin Nutr 101:966–982. https://doi.org/10.3945/ajcn.114.091595

    Article  CAS  PubMed  Google Scholar 

  35. Jalali M, Karamizadeh M, Ferns GA, Zare M, Moosavian SP, Akbarzadeh M (2020) The effects of cashew nut intake on lipid profile and blood pressure: a systematic review and meta-analysis of randomized controlled trials. Complement Ther Med 50:102387. https://doi.org/10.1016/j.ctim.2020.102387

    Article  PubMed  Google Scholar 

  36. Domènech M, Serra-Mir M, Roth I, Freitas-Simoes T, Valls-Pedret C, Cofán M, López A, Sala-Vila A, Calvo C, Rajaram S (2019) Effect of a walnut diet on office and 24-hour ambulatory blood pressure in elderly individuals: findings from the WAHA randomized trial. Hypertension 73:1049–1057

    Article  PubMed  Google Scholar 

  37. Micek A, Godos J, Cernigliaro A, Cincione RI, Buscemi S, Libra M, Galvano F, Grosso G (2021) Total nut, tree nut, and peanut consumption and metabolic status in southern Italian adults. Int J Environ Res Public Health. https://doi.org/10.3390/ijerph18041847

    Article  PubMed  PubMed Central  Google Scholar 

  38. Zheng L, Sun Z, Zhang X, Xu C, Li J, Li M, Wang L, Li J, Hu D, Sun Y (2010) Risk of progression to hypertension across baseline blood pressure in nonhypertensive participants among rural Chinese adults: a prospective study. J Hypertens 28:1158–1165. https://doi.org/10.1097/HJH.0b013e3283378568

    Article  CAS  PubMed  Google Scholar 

  39. Tarp J, Brønd JC, Andersen LB, Møller NC, Froberg K, Grøntved A (2016) Physical activity, sedentary behavior, and long-term cardiovascular risk in young people: a review and discussion of methodology in prospective studies. J Sport Health Sci 5:145–150. https://doi.org/10.1016/j.jshs.2016.03.004

    Article  PubMed  PubMed Central  Google Scholar 

  40. Cheung BM, Li C (2012) Diabetes and hypertension: is there a common metabolic pathway? Curr Atheroscler Rep 14:160–166. https://doi.org/10.1007/s11883-012-0227-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Dean E, Lomi C, Bruno S, Awad H, O’Donoghue G (2011) Addressing the common pathway underlying hypertension and diabetes in people who are obese by maximizing health: the ultimate knowledge translation gap. Int J Hypertens 2011:835805. https://doi.org/10.4061/2011/835805

    Article  PubMed  PubMed Central  Google Scholar 

  42. Sun D, Zhou T, Heianza Y, Li X, Fan M, Fonseca VA, Qi L (2019) Type 2 diabetes and hypertension. Circ Res 124:930–937. https://doi.org/10.1161/circresaha.118.314487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Viguiliouk E, Kendall CW, Blanco Mejia S, Cozma AI, Ha V, Mirrahimi A, Jayalath VH, Augustin LS, Chiavaroli L, Leiter LA, de Souza RJ, Jenkins DJ, Sievenpiper JL (2014) Effect of tree nuts on glycemic control in diabetes: a systematic review and meta-analysis of randomized controlled dietary trials. PLoS ONE 9:e103376. https://doi.org/10.1371/journal.pone.0103376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Willett W (2013) Nutritional epidemiology, vol 40, 3rd edn. Oxford University Press, NY

    Google Scholar 

  45. Freedman LS, Schatzkin A, Midthune D, Kipnis V (2011) Dealing with dietary measurement error in nutritional cohort studies. J Natl Cancer Inst 103:1086–1092. https://doi.org/10.1093/jnci/djr189

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Research Program funded by the Korea Centers for Disease Control and Prevention (2004-E71004-00, 2005-E71011-00, 2006-E71009-00, 2007-E71002-00, 2008-E71004-00, 2009-E71006-00, 2010-E71003-00, 2011-E71002-00, 2012-E71007-00, 2013-E71008-00, 2014-E71006-01, 2016-E71001-00, 2017N-E71001-00), and by the National Research Foundation of Korea grant funded by the Korean Government (Ministry of Science, ICT & Future Planning) (No. NRF-2020R1A2C1004815). The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

SJ: formal analysis, visualization, writing—original draft preparation, writing—reviewing and editing; HWW: data curation; JS: investigation, project administration; Y-MK: investigation, project administration; S-BK: investigation, project administration; HCK: investigation, project administration; MKK: conceptualization, funding acquisition, investigation, project administration, methodology, supervision, writing—reviewing and editing. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Mi Kyung Kim.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (Institutional Review Boards of the Hanyang University, Chonnam University, Keimyung University, Yonsei Wonju College of Medicine, and Yonsei University) and with the Helsinki Declaration of 1964, as revised in 2000. Informed consent was obtained from all participants for being included in the study.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 41 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jung, S., Woo, H.W., Shin, J. et al. Cumulative average nut consumption in relation to lower incidence of hypertension: a prospective cohort study of 10,347 adults. Eur J Nutr 61, 1571–1583 (2022). https://doi.org/10.1007/s00394-021-02743-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-021-02743-5

Keywords

Navigation