Skip to main content

Advertisement

Log in

Dietary inflammatory index and its relationship with gut microbiota in individuals with intestinal constipation: a cross-sectional study

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Objective

To determine whether there is an association between the inflammatory potential of the diet, measured by the dietary inflammatory index (DII®), and the composition of intestinal microbiota in adults with functional constipation (FC).

Methods

A cross-sectional study was carried out with 68 adults with FC. Energy-adjusted DII (E-DII) was calculated from data obtained from food surveys, serum inflammation markers were measured and the composition of the intestinal microbiota was evaluated using the 16S rRNA gene sequencing method. Participants were assigned into two groups: anti-inflammatory diet (AD: E-DII < 0) and pro-inflammatory diet (PD: E-DII ≥ 0). Associations of E-DII scores with microbial diversity and composition were examined using differences between the E-DII groups and linear and hierarchical regression.

Results

E- DII was inversely correlated with relative abundance of Hungatella spp. and Bacteroides fragilis and positively correlated with Bacteroides thetaiotaomicron and Bacteroides caccae (p < 0.05). B. fragilis was positively correlated with IL-10. The AD group had higher relative abundances for the genus Blautia and Hungatella, lower abundances of Bacteroides thetaiotamicron and Bacteroides spp. (p < 0.05), as well as higher frequency of evacuation (p = 0.02) and lower use of laxatives (p = 0.05). The AD group showed a reduction in the abundance of Desulfovibrio spp. and Butyrivibrio, Butyrivibrio crossotus, Bacteroides clarus, Bacteroides coprophilus and Bacteroides intestinalis (all p < 0.05). The greater abundance of Bacteroides clarus increased the individual's chance of performing a manual evacuation maneuver.

Conclusion

Therefore, the results of this study demonstrated that the inflammatory potential of the diet is associated with the gut microbiota in individuals with FC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and material

The data described in the manuscript will be made available upon request.

Code availability

Not applicable.

References

  1. Sobrado CW, Neto IJFC, Pinto RA, Sobrado LF, Nahas SC, Cecconello I (2018) Diagnosis and treatment of constipation: a clinical update based on the Rome IV criteria. J Coloproctology 38:137–144. https://doi.org/10.1016/j.jcol.2018.02.003

    Article  Google Scholar 

  2. Ohkusa T, Koido S, Nishikawa Y, Sato N (2019) Gut microbiota and chronic constipation: a review and update. Front Med 6:1–9. https://doi.org/10.3389/fmed.2019.00019

    Article  Google Scholar 

  3. Khalif IL, Quigley EMM, Konovitch EA, Maximova ID (2005) Alterations in the colonic flora and intestinal permeability and evidence of immune activation in chronic constipation. Dig Liver Dis 37:838–849. https://doi.org/10.1016/j.dld.2005.06.008

    Article  CAS  PubMed  Google Scholar 

  4. Zhu L, Liu W, Alkhouri R, Baker RD, Bard JE, Quigley EM, Baker SS (2014) Structural changes in the gut microbiome of constipated patients. Physiol Genom 46:679–686. https://doi.org/10.1152/physiolgenomics.00082.2014

    Article  CAS  Google Scholar 

  5. Albenberg LG, Wu GD (2014) Diet and the intestinal microbiome: Associations, functions, and implications for health and disease. Gastroenterology 146:1564–1572. https://doi.org/10.1053/j.gastro.2014.01.058

    Article  CAS  PubMed  Google Scholar 

  6. Kedia S, Rampal R, Paul J, Ahuja V (2016) Gut microbiome diversity in acute infective and chronic inflammatory gastrointestinal diseases in North India. J Gastroenterol 51:660–671. https://doi.org/10.1007/s00535-016-1193-1

    Article  CAS  PubMed  Google Scholar 

  7. Shivappa N, Steck SE, Hurley TG, Hussey JR, James RH (2014) Designing and developing a literature-derived, population-based dietary inflammatory index. Public Health Nutr 17:1689–1696. https://doi.org/10.1017/S1368980013002115

    Article  PubMed  Google Scholar 

  8. Shivappa N, Hebert JR, Rietzschel ER, De Buyzere ML, Langlois M, Debruyne E, Marcos A, Huybrechts I (2015) Associations between dietary inflammatory index and inflammatory markers in the Asklepios Study. Br J Nutr 113:665–671. https://doi.org/10.1017/S000711451400395X

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mtintsilana A, Micklesfield LK, Chorell E, Olsson T, Shivappa N, Hebert JR, Kengne AP, Goedecke JH (2019) Adiposity mediates the association between the dietary inflammatory index and markers of type 2 diabetes risk in middle-aged black South African women. Nutrients 11:1246. https://doi.org/10.3390/nu11061246

    Article  CAS  PubMed Central  Google Scholar 

  10. Shivappa N, Wirth MD, Murphy EA, Hurley TG, Hébert JR (2018) Association between the Dietary Inflammatory Index (DII) and urinary enterolignans and C-reactive protein from the National Health and Nutrition Examination Survey-2003–2008. Eur J Nutr N 58:797–805. https://doi.org/10.1007/s00394-018-1690-5

    Article  CAS  Google Scholar 

  11. Zheng J, Hoffman KL, Chen JS, Shivappa N, Sood A, Browman GJ, Dirba DD, Hanash S, Wei P, Hebert JR et al (2020) Dietary inflammatory potential in relation to the gut microbiome: results from a cross-sectional study. Br J Nutr 124:931–942. https://doi.org/10.1017/S0007114520001853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. von Elm E, Altman DG, Egger M, Pocock SJ, Gøtzsche PC, Vandenbroucke JP (2008) The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. J Clin Epidemiol 61:344–349. https://doi.org/10.7326/0003-4819-147-8-200710160-00010

    Article  Google Scholar 

  13. Schmulson MJ, Drossman DA (2017) What’s new in Rome IV? Neurogastroenterol Motil 29(151–63):87. https://doi.org/10.5056/jnm16214

    Article  Google Scholar 

  14. Ipaq (2005) Guidelines for data processing and analysis of the International Physical Activity Questionnaire (IPAQ) Short and Long Forms. Ipaq, pp 1–15. http://www.IPAQ.ki.se. Accessed 8 May 2017

  15. Lohman TG, Roche AF, Martorell R (1988) Anthropometric standardization reference manual. Human Kinetics Books, Champaign

    Google Scholar 

  16. Word Health Organization (1995). https://www.euro.who.int/en/health-topics/disease-prevention/nutrition/a-healthy-lifestyle/body-mass-index-bmi. Accessed 11 Sept 2017

  17. Pinheiro ABV, Lacerda EMA, Benzecry EH, Gomes MCS, Costa VM (2008) Tabela para Avaliação do Consumo Alimentar em Medidas Caseiras. Atheneu, Sao Paulo

  18. IBGE (2011) Pesquisa de Orçamentos Familiares 2008–2009: Tabela de Medidas Referidas para os Alimentos Consumidos no Brasil. Ministério do Planjemento, Orçamento e Gestão, pp 1–63. http://biblioteca.ibge.gov.br/visualizacao/livros/liv81830.pdf. Accessed 23 Jan 2019

  19. Hébert JR, Shivappa N, Wirth MD, Hussey JR, Hurley TG (2019) Perspective: The Dietary Inflammatory Index (DII)-lessons learned, improvements made, and future directions. Adv Nutr 10:185–195. https://doi.org/10.1093/advances/nmy071

    Article  PubMed  PubMed Central  Google Scholar 

  20. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410. https://doi.org/10.1016/s0022-2836(05)80360-2

    Article  CAS  PubMed  Google Scholar 

  21. Christoff AP, Cruz GNF, Sereia AFR, Eiko-Yamanaka L, Silveira PP, Oliveira LFV (2019) End-to-end assessment of fecal bacteriome analysis: from sample processing to DNA sequencing and bioinformatics results. BioRxiv. https://doi.org/10.1101/646349

    Article  Google Scholar 

  22. R Development Core Team (2008) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Austria. https://www.R-project.org/. Accessed 25 Feb 2020

  23. McMurdie PJ, Holmes S (2013) Phyloseq: an r package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8:e61217. https://doi.org/10.1371/journal.pone.0061217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:1–21. https://doi.org/10.1186/s13059-014-0550-8

    Article  CAS  Google Scholar 

  25. Sohn MB, Du R, An L (2015) A robust approach for identifying differentially abundant features in metagenomic samples. Bioinform Adv 31:2269–2275. https://doi.org/10.1093/bioinformatics/btv165

    Article  CAS  Google Scholar 

  26. Candela M, Maccaferri S, Turroni S, Carnevali P, Brigidi P (2010) Functional intestinal microbiome, new frontiers in prebiotic design. Int J Food Microbiol 140(2–3):93–101. https://doi.org/10.1016/j.ijfoodmicro.2010.04.017

    Article  CAS  PubMed  Google Scholar 

  27. Raba G, Adamberg S, Adamberg K (2021) Acidic pH enhances butyrate production from pectin by faecal microbiota. FEMS Microbiol Lett 368:fnab042. https://doi.org/10.1093/femsle/fnab042

    Article  CAS  PubMed  Google Scholar 

  28. Ohara T (2019) Identification of the microbial diversity after fecal microbiota transplantation therapy for chronic intractable constipation using 16s rRNA amplicon sequencing. PLoS ONE 14:1–12. https://doi.org/10.1371/journal.pone.0214085

    Article  CAS  Google Scholar 

  29. Walker AW, Lawley TD (2012) Therapeutic modulation of intestinal dysbiosis. Pharmacol Res 69:75–86. https://doi.org/10.1016/j.phrs.2012.09.008

    Article  CAS  PubMed  Google Scholar 

  30. Cao H, Liu X, An Y, Zhou G, Liu Y, Xu M, Dong W, Wang S, Yan F, Jiang K et al (2017) Dysbiosis contributes to chronic constipation development via regulation of serotonin transporter in the intestine. Sci Rep 7:1–12. https://doi.org/10.1038/s41598-017-10835-8

    Article  CAS  Google Scholar 

  31. Tan H, Zhai Q, Chen W (2019) Investigations of Bacteroides spp. towards next-generation probiotics. Food Res Int 116:637–644. https://doi.org/10.1016/j.foodres.2018.08.088

    Article  CAS  PubMed  Google Scholar 

  32. Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, Mende DR et al (2011) Enterotypes of the human gut microbiome. Nature 473:174–180. https://doi.org/10.1038/nature09944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lynch A, Tammireddy SR, Doherty MK, Whitfield PD, Clarke DJ (2019) The glycine lipids of Bacteroides thetaiotaomicron are important for fitness during growth in vivo and in vitro. Appl Environ Microbiol 85:1–14. https://doi.org/10.1128/AEM.02157-18

    Article  Google Scholar 

  34. Staley C, Weingarden AR, Khoruts A, Sadowsky MJ (2017) Interaction of gut microbiota with bile acid metabolism and its influence on disease states. Appl Microbiol Biotechnol 101:47–64. https://doi.org/10.1007/s00253-016-8006-6

    Article  CAS  PubMed  Google Scholar 

  35. Wan Y, Wang F, Yuan J, Li J, Jiang D, Zhang J et al (2018) Effects of dietary fat on gut microbiota and faecal metabolites, and their relationship with cardiometabolic risk factors: a 6-month randomised controlled-feeding trial. Gut Microbiota 68:1417–1429. https://doi.org/10.1136/gutjnl-2018-317609

    Article  CAS  Google Scholar 

  36. Pimentel TC, Garcia S, Prudencio SH (2012) Aspectos Funcionais, de Saúde e Tecnológicos de Frutanos tipo Inulina. Boletim Centro de Pesquisa de Processamento de Alimentos 30:103–118. https://doi.org/10.5380/cep.v30i1.28593

    Article  CAS  Google Scholar 

  37. Wei B, Dalwadi H, Gordon KL, Landers C, Bruckner D, Tangan RS, Braun J (2001) Molecular cloning of a Bacteroides caccae TonB linked outer membrane protein identified by an inflammatory bowel disease marker antibody. Infect Immun 69:6044–6054. https://doi.org/10.1128/IAI.69.10.6044-6054.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mancabelli L, Milani C, Lugli GA, Turroni F, Mangifesta M, Viappiani A, Ticinesi A, Nouvenne A, Meschi T, Van Sinderen D et al (2017) Unveiling the gut microbiota composition and functionality associated with constipation through metagenomic analyses. Sci Rep 7:1–9. https://doi.org/10.1038/s41598-017-10663-w

    Article  Google Scholar 

  39. Vacca M, Celano G, Calabrese FM, Portincasa P, Gobbetti M, De Angelis M (2020) The controversial role of human gut lachnospiraceae. Microorganisms 8:1–25. https://doi.org/10.3390/microorganisms8040573

    Article  CAS  Google Scholar 

  40. Frank DN, Amand ALS, Feldman RA, Boedeker EC, Harpaz N, Pace NR (2007) Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci USA 104:13780–13785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gevers D, Kugathasan S, Denson LA, Vázquez-Baeza Y, Van Treuren W, Ren B, Schwager E, Knights D, Song SJ, Yassour M et al (2014) The treatment-naive microbiome in new-onset Crohn’s disease. Cell Host Microbe 15:382–392. https://doi.org/10.1016/j.chom.2014.02.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chen W, Liu F, Ling Z, Tong X, Xiang C (2012) Human intestinal lumen and mucosa-associated microbiota in patients with colorectal cancer. PLoS ONE 7:e39743. https://doi.org/10.1371/journal.pone.0039743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Nilsson A, Granfeldt Y, Östman E, Preston T, Björck I (2006) Effects of GI and content of indigestible carbohydrates of cereal-based evening meals on glucose tolerance at a subsequent standardised breakfast. Eur J Clin Nutr 60:1092–1099. https://doi.org/10.1038/sj.ejcn.1602423

    Article  CAS  PubMed  Google Scholar 

  44. Martínez I, Lattimer JM, Hubach KL, Case JA, Yang J, Weber CG, Louk JA, Rose DJ, Kyureghian G, Peterson DA et al (2012) Gut microbiome composition is linked to whole grain-induced immunological improvements. ISME J 7:269–280. https://doi.org/10.1038/ismej.2012.104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wan Y, Wang F, Yuan J, Li J, Jiang D, Zhang J, Li H, Wang R, Tang J, Huang T et al (2018) Effects of dietary fat on gut microbiota and faecal metabolites, and their relationship with cardiometabolic risk factors: a 6-month randomised controlled-feeding trial. Gut 68:1417–1429. https://doi.org/10.1136/gutjnl-2018-317609

    Article  CAS  Google Scholar 

  46. Kushkevych I, Dordević D, Vítězová M, Kollár P (2018) Cross-correlation analysis of the Desulfovibrio growth parameters of intestinal species isolated from people with colitis. Biologia (Bratisl) 73:1137–1143. https://doi.org/10.2478/s11756-018-0118-2

    Article  Google Scholar 

  47. Rowan F, Docherty NG, Murphy M, Murphy B, Coffey JC, O’Connell PR (2010) Desulfovibrio bacterial species are increased in ulcerative colitis. Dis Colon Rectum 53:1530–1536. https://doi.org/10.1007/DCR.0b013e3181f1e620

    Article  PubMed  Google Scholar 

  48. Jian C, Luukkonen P, Sädevirta S, Yki-Järvinen H, Salonen A (2020) Impact of short-term overfeeding of saturated or unsaturated fat or sugars on the gut microbiota in relation to liver fat in obese and overweight adults. Clin Nutr 40:1–10. https://doi.org/10.1016/j.clnu.2020.05.008

    Article  CAS  Google Scholar 

  49. Aleksandrova K, Romero-Mosquera B, Hernandez V (2017) Diet, gut microbiome and epigenetics: emerging links with inflammatory bowel diseases and prospects for management and prevention. Nutrients 9:1–13. https://doi.org/10.3390/nu9090962

    Article  CAS  Google Scholar 

Download references

Funding

The Coordination for the Improvement of Higher Education Personnel (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—CAPES) for the scholarship (LMC).

Author information

Authors and Affiliations

Authors

Contributions

The authors’ responsibilities were as follows: designed research: PBB and LMC; conducted research: LMC, ACO and PBB; provided essential reagents or provided essential materials: KGM, NS, JRH and THMC; analyzed data or performed statistical analysis: LMC, MMM, PBB and TMC; wrote paper: LMC and PBB; had primary responsibility for final content: LMC and PBB.

Corresponding author

Correspondence to Patrícia B. Botelho.

Ethics declarations

Conflict of interest

Dr. James R. Hébert owns controlling interest in Connecting Health Innovations LLC (CHI), a company that has licensed the right to his invention of the dietary inflammatory index (DII®) from the University of South Carolina in order to develop computer and smart phone applications for patient counseling and dietary intervention in clinical settings. Dr. Nitin Shivappa is an employee of CHI. The other authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional. The study was approved by the Ethics Committee of the Clinical Hospital of the Federal University of Goiás with approval number of 2.281.977.

Consent to participate

Eligible volunteers who agreed to participate in the study signed a free and informed consent form. Informed consent was obtained from all participants included in the study.

Consent for publication

Not applicable.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Costa, L.M., Mendes, M.M., Oliveira, A.C. et al. Dietary inflammatory index and its relationship with gut microbiota in individuals with intestinal constipation: a cross-sectional study. Eur J Nutr 61, 341–355 (2022). https://doi.org/10.1007/s00394-021-02649-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-021-02649-2

Keywords

Navigation