Skip to main content

Advertisement

Log in

Sodium status is associated with type 2 diabetes mellitus: a systematic review and meta-analysis of observational studies

  • Review
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

The relationship between sodium intake and the risk of developing type 2 diabetes mellitus (T2DM) is inconsistent. We, therefore, aimed to summarize the current evidence by conducting a systematic review and meta-analysis of observational studies.

Methods

We retrieved studies which compared any marker of sodium status between individuals with T2DM and those without diabetes published in any language by searching online databases from inception up to June 2019. Summary effects were derived using random-effects model.

Results

A total of 44 studies with 503,830 participants from 25 countries were included in this study. Sodium status was significantly different between individuals with and without T2DM (Hedges’ g = 0.21; 95% CI 0.02, 0.40; P = 0.029). Individuals with T2DM had higher sodium intake compared to non-diabetic controls (WMD = 621.79 mg/day; 95% CI 321.53, 922.06; P < 0.001) and 24-h urinary excretion was associated with likelihood of developing T2DM (OR = 1.27, 95% CI 1.15, 1.41; P < 0.001). Furthermore, salivary, hair, and platelet sodium were higher in patients with T2DM compared to controls (P < 0.05).

Conclusion

The findings of the current meta-analysis suggest that sodium levels are higher in patients with T2DM compared to non-diabetic controls; however, given that these studies are observational, it is not possible to infer causality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and material

The study protocol was registered in the PROSPERO (international prospective register of systematic reviews) database under the number CRD42016050627.

References

  1. GBD Disease and Injury Incidence and Prevalence Collaborators (2016) Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990–2015: a systematic analysis for the Global Burden of Disease Study. Lancet 388(10053):1545–1602

    Article  Google Scholar 

  2. Seuring T, Archangelidi O, Suhrcke M (2015) The economic costs of type 2 diabetes: a global systematic review. Pharmacoeconomics 33(8):811–831

    Article  PubMed  PubMed Central  Google Scholar 

  3. NCD Risk Factor Collaboration (NCD-RisC) (2016) Worldwide trends in diabetes since 1980: a pooled analysis of 751 population-based studies with 4· 4 million participants. Lancet 387(10027):1513–1530

    Article  Google Scholar 

  4. Wild S, Roglic G, Green A, Sicree R, King H (2004) Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care 27(5):1047–1053

    Article  PubMed  Google Scholar 

  5. Ogurtsova K, da Rocha Fernandes JD, Huang Y et al (2017) IDF Diabetes Atlas: Global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Res Clin Pract 128:40–50

    Article  CAS  PubMed  Google Scholar 

  6. Hu FB (2011) Globalization of diabetes: the role of diet, lifestyle, and genes. Diabetes Care 34(6):1249–1257

    Article  PubMed  PubMed Central  Google Scholar 

  7. Via M (2012) The malnutrition of obesity: micronutrient deficiencies that promote diabetes. ISRN Endocrinol 2012:1–8

    Article  Google Scholar 

  8. Fang X, Liang C, Li M, Montgomery S, Fall K, Aaseth J, Cao Y (2016) Biology, dose-response relationship between dietary magnesium intake and cardiovascular mortality: a systematic review and dose-based meta-regression analysis of prospective studies. J Trace Elem Med Biol 38:64–73

    Article  CAS  PubMed  Google Scholar 

  9. Umesawa M, Iso H, Date C et al (2008) Relations between dietary sodium and potassium intakes and mortality from cardiovascular disease: the Japan Collaborative Cohort Study for Evaluation of Cancer Risks. Am J Clin Nutr 88(1):195–202

    Article  CAS  PubMed  Google Scholar 

  10. Cohen HW, Hailpern SM, Alderman MH (2008) Sodium intake and mortality follow-up in the Third National Health and Nutrition Examination Survey (NHANES III). J Gen Intern Med 23(9):1297–1302

    Article  PubMed  PubMed Central  Google Scholar 

  11. Seldin DW (1990) The regulation of sodium and chloride balance. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  12. Hoffmann IS, Cubeddu LX (2009) Salt and the metabolic syndrome. Nutr Metab Cardiovasc Dis 19(2):123–128

    Article  CAS  PubMed  Google Scholar 

  13. Oria M, Yaktine AL, Strom BL (2013) Sodium intake in populations: assessment of evidence. National Academies Press, Washington, D.C.

    Google Scholar 

  14. Ekinci EI, Clarke S, Thomas MC, Moran JL, Cheong K, MacIsaac RJ, Jerums G (2011) Dietary salt intake and mortality in patients with type 2 diabetes. Diabetes Care 34(3):703–709

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kong YW, Baqar S, Jerums G, Ekinci EL (2016) Sodium and its role in cardiovascular disease–the debate continues. Front Endocrinol (Lausanne) 7:164

    Article  Google Scholar 

  16. Thomas MC, Moran J, Forsblom C et al (2011) The association between dietary sodium intake, ESRD, and all-cause mortality in patients with type 1 diabetes. Diabetes Care 34(4):861–866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Fujita T, Henry WL, Bartter FC, Lake CR, Delea CS (1980) Factors influencing blood pressure in salt-sensitive patients with hypertension. Am J Med 69(3):334–344

    Article  CAS  PubMed  Google Scholar 

  18. Strazzullo P, D’Elia L, Kandala NB, Cappuccio FP (2009) Salt intake, stroke, and cardiovascular disease: meta-analysis of prospective studies. BMJ 339:b4567

    Article  PubMed  PubMed Central  Google Scholar 

  19. Soltani S, Kolahdouz Mohammadi R, Shab-Bidar S, Vafa M, Salehi-Abargouei A (2019) Sodium status and the metabolic syndrome: a systematic review and meta-analysis of observational studies. Crit Rev Food Sci Nutr 59(2):196–206

    Article  CAS  PubMed  Google Scholar 

  20. Breen C, Ryan M, McNulty B, Gibney MJ, Canavan R, O’Shea D (2014) High saturated-fat and low-fibre intake: a comparative analysis of nutrient intake in individuals with and without type 2 diabetes. Nutr Diabetes 4(2):e104–e104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Prathibha KM, Johnson P, Ganesh M, Subhashini AS (2013) Evaluation of salivary profile among adult type 2 diabetes mellitus patients in South India. J Clin Diagn Res 7(8):1592–1595

    Google Scholar 

  22. Afridi HI, Kazi TG, Kazi N et al (2008) Potassium, calcium, magnesium, and sodium levels in biological samples of hypertensive and nonhypertensive diabetes mellitus patients. Biol Trace Elem Res 124(3):206–224

    Article  CAS  PubMed  Google Scholar 

  23. Prynne CJ, Mander A, Wadsworth ME, Stephen AM (2009) Diet and glycosylated haemoglobin in the 1946 British birth cohort. Eur J Clin Nutr 63(9):1084–1090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Afsar B, Elsurer R (2014) The relationship between central hemodynamics, morning blood pressure surge, glycemic control and sodium intake in patients with type 2 diabetes and essential hypertension. Diabetes Res Clin Pract 104(3):420–426

    Article  CAS  PubMed  Google Scholar 

  25. Bell GM, Reid W, Ewing DJ, Cumming AD, Watson ML, Doig A, Clarke BF (1987) Abnormal diurnal urinary sodium and water excretion in diabetic autonomic neuropathy. Clin Sci (Lond) 73(3):259–265

    Article  CAS  Google Scholar 

  26. Lasisi TJ, Fasanmade AA (2012) Salivary flow and composition in diabetic and non-diabetic subjects. Niger J Physiol Sci 27(1):79–82

    CAS  PubMed  Google Scholar 

  27. Pruijm M, Wuerzner G, Maillard M, Bovet P, Renaud C, Bochud M, Burnier M (2010) Glomerular hyperfiltration and increased proximal sodium reabsorption in subjects with type 2 diabetes or impaired fasting glucose in a population of the African region. Nephrol Dial Transplant 25(7):2225–2231

    Article  CAS  PubMed  Google Scholar 

  28. Mbanya JC, Thomas TH, Taylor R, Alberti KG, Wilkinson R (1989) Increased proximal tubular sodium reabsorption in hypertensive patients with type 2 diabetes. Diabet Med 6(7):614–620

    Article  CAS  PubMed  Google Scholar 

  29. Bagherniya M, Khayyatzadeh SS, Heidari Bakavoli AR, Ferns GA, Ebrahimi M, Safarian M, Nematy M, Ghayour-Mobarhan M (2018) Serum high-sensitive C-reactive protein is associated with dietary intakes in diabetic patients with and without hypertension: a cross-sectional study. Ann Clin Biochem 55(4):422–429

    Article  CAS  PubMed  Google Scholar 

  30. Kagiyama S, Koga T, Kaseda S, Ishihara S, Kawazoe N, Sadoshima S, Matsumura K, Takata Y, Tsuchihashi T, Iida M (2009) Correlation between increased urinary sodium excretion and decreased left ventricular diastolic function in patients with type 2 diabetes mellitus. Clin Cardiol 32(10):569–574

    Article  PubMed  PubMed Central  Google Scholar 

  31. McGeoch SC, Holtrop G, Fyfe C, Lobley GE, Pearson DW, Abraham P, Megson IL, Macrury SM, Johnstone AM (2011) Food intake and dietary glycaemic index in free-living adults with and without type 2 diabetes mellitus. Nutrients 3(6):683–693

    Article  PubMed  PubMed Central  Google Scholar 

  32. de Châtel R, Weidmann P, Flammer J, Ziegler WH, Beretta-Piccoli C, Vetter W, Reubi FC (1977) Sodium, renin, aldosterone, catecholamines, and blood pressure in diabetes mellitus. Kidney Int 12(6):412–421

    Article  PubMed  Google Scholar 

  33. O’Hare JA, Ferriss JB, Twomey BM, Cole M, Brady D, O’Sullivan DJ (1985) Blood pressure may be sodium-dependent in diabetic patients without overt nephropathy. Ir J Med Sci 154(12):455

    Article  PubMed  Google Scholar 

  34. O’Hare JA, Ferriss JB, Brady D, Twomey B, O’Sullivan DJ (1985) Exchangeable sodium and renin in hypertensive diabetic patients with and without nephropathy. Hypertension 7(6 Pt 2):II43–II48

    CAS  PubMed  Google Scholar 

  35. Lim SY, Jin YS (2014) Association between dietary sodium intake and abdominal obesity in pre-diabetes Korean adults. J Korean Soc Food Sci Nutr 43(5):763–771

    Article  CAS  Google Scholar 

  36. Murabayashi S, Baba T, Tomiyama T, Takebe K (1989) Urinary dopamine, noradrenaline and adrenaline in type 2 diabetic patients with and without nephropathy. Horm Metab Res 21(01):27–32

    Article  CAS  PubMed  Google Scholar 

  37. Baqar S, Straznicky NE, Lambert G, Kong YW, Dixon JB, Jerums G, Ekinci EL, Lambert E (2019) Comparison of endothelial function and sympathetic nervous system activity along the glucose continuum in individuals with differing metabolic risk profiles and low dietary sodium intake. BMJ Open Diabetes Res Care 7(1):e000606

    Article  PubMed  PubMed Central  Google Scholar 

  38. Radzeviciene L, Ostrauskas R (2017) Adding salt to meals as a risk factor of type 2 diabetes mellitus: a case-control study. Nutrients 9(1):67

    Article  PubMed Central  Google Scholar 

  39. Moher D, Liberati A, Tetzlaff J, Altman DG, PRISMA Group (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ 339:2535

    Article  Google Scholar 

  40. Wells G, Shea B, O'Connell D, Peterson J, Welch V, Losos M, Tugwell P (2006) The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses, Ottawa Health Research Institute (OHRI)

  41. Herzog R, Álvarez-Pasquin MJ, Díaz C, Del Barrio JL, Estrada JM, Gil Á (2013) Are healthcare workers’ intentions to vaccinate related to their knowledge, beliefs and attitudes? A systematic review. BMC Public Health 13:154

    Article  PubMed  PubMed Central  Google Scholar 

  42. Borenstein M, Hedges LV, Higgins JP, Rothstein HR (2011) Introduction to meta-analysis. Wiley, New York

    Google Scholar 

  43. Cochran WG (1954) The combination of estimates from different experiments. Biometrics 10(1):101–129

    Article  Google Scholar 

  44. Egger M, Davey Smith G, Schneider M, Minder C (1997) Bias in meta-analysis detected by a simple, graphical test. BMJ 315(7109):629–634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Egger M, Davey-Smith G, Altman D (2008) Systematic reviews in health care: meta-analysis in context. Wiley, New York

    Google Scholar 

  46. Ahmed AM, Khabour OF, Awadalla AH, Waggiallah HA (2018) Serum trace elements in insulin-dependent and non-insulin-dependent diabetes: a comparative study, diabetes, metabolic syndrome and obesity: targets and therapy. Diabetes Metab Syndr Obes 11:887–892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ambikathanaya UK, Hegde U, Tippeswamy AM (2018) Role of salivary electrolytes in prevalence of dental caries among diabetic and non-diabetic adults. J Clin Diagn Res 12(8):ZC05–ZC08

    CAS  Google Scholar 

  48. Engwa GA, Nwalo FN, Attama TJC, Abonyi MC, Akaniro-Ejim EN, Unachukwu MN, Njokunwogbu AN, Ubi BE (2018) Influence of type 2 diabetes on serum electrolytes and renal function indices in patients. J Clin Diagn Res 12(6):BC13–BC16

    CAS  Google Scholar 

  49. Fard AA, Abbasnezhad P, Makhdomi K, Salehi M, Karamdel HR, Saboory E (2017) Association of serum prolactin concentrations with renal failure in diabetic patients. Rom J Diabetes Nutr Metab Dis 24(3):179–185

    CAS  Google Scholar 

  50. Karthigadevi G, Duraisamy R, Priya VV, Santhosh Kumar MP (2018) Analysis of salivary electrolytes in diabetic and non-diabetic patients. Drug Invent Today 10(9):1801–1805

    Google Scholar 

  51. Majid A, Sayer SA, Farhood HB (2018) Study of some biochemical parameters for patients with type ii diabetes mellitus in thi-qar governorate, iraq. J Pharm Sci Res 10(11):2938–2941

    CAS  Google Scholar 

  52. McNair P, Madsbad S, Christiansen C, Christensen MS, Transbøl I (1982) Hyponatremia and hyperkalemia in relation to hyperglycemia in insulin-treated diabetic out-patients. Clin Chim Acta 120(2):243–250

    Article  CAS  PubMed  Google Scholar 

  53. Min SH, Kong SH, Lee JE, Lee DH, Oh TJ, Kim KM, Park KS, Jang HC, Lim S (2017) Association of angiotensin-II levels with albuminuria in subjects with normal glucose metabolism, prediabetes, and type 2 diabetes mellitus. J Diabetes Complicat 31(10):1499–1505

    Article  Google Scholar 

  54. Reza E, Rashid A, Haque M, Pervin F, Ali L (2015) Serum and intracellular levels of ionized sodium, potassium, and magnesium in type 2 diabetic subjects. Int J Nutr Pharmacol Neurol Dis 5(2):69–74

    Article  CAS  Google Scholar 

  55. Shirzaiy M, Heidari F, Dalirsani Z, Dehghan J (2015) Estimation of salivary sodium, potassium, calcium, phosphorus and urea in type II diabetic patients. Diabetes Metab Syndr 9(4):332–336

    Article  PubMed  Google Scholar 

  56. Tepel M, Bauer S, Husseini S, Raffelsiefer A, Zidek W (1993) Increased cytosolic free sodium concentrations in platelets from type 2 (non-insulin-dependent) diabetic patients is associated with hypertension. J Endocrinol 138(3):565–572

    Article  CAS  PubMed  Google Scholar 

  57. Olde Engberink RHG, van den Hoek TC, van Noordenne ND, van den Born BH, Peters-Sengers H, Vogt L (2017) Use of a single baseline versus multiyear 24-hour urine collection for estimation of long-term sodium intake and associated cardiovascular and renal risk. Circulation 136(10):917–926

    Article  CAS  PubMed  Google Scholar 

  58. Petermann-Rocha F, Sillars A, Brown R et al (2019) Sociodemographic patterns of urine sodium excretion and its association with hypertension in Chile: a cross-sectional analysis. Public Health Nutr 22(11):2012–2021

    Article  PubMed  Google Scholar 

  59. Rush TM, Kritz-Silverstein D, Laughlin GA, Fung TT, Barrett-Connor E, McEvoy LK (2017) Association between dietary sodium intake and cognitive function in older adults. J Nutr Health Aging 21(3):276–283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Sadanaga T, Hirota S, Enomoto K, Kohsaka S, Tsujita K, Ito M, Mitamura H, Fukuda K (2019) Evaluation of sodium intake for the prediction of cardiovascular events in Japanese high-risk patients: the ESPRIT Study. Hypertens Res 42(2):233–240

    Article  CAS  PubMed  Google Scholar 

  61. Vega-Vega O, Fonseca-Correa JI, Mendoza-De la Garza A, Rincón-Pedrero R, Espinosa-Cuevas A, Baeza-Arias Y, Dary O, Herrero-Bervera B, Nieves-Anaya I, Correa-Rotter R (2018) Contemporary dietary intake: Too much sodium, not enough potassium, yet sufficient iodine: the SALMEX cohort results. Nutrients 10(7):816

    Article  PubMed Central  CAS  Google Scholar 

  62. Ware LJ, Charlton K, Schutte AE, Cockeran M, Naidoo N, Kowal P (2017) Associations between dietary salt, potassium and blood pressure in South African adults: WHO SAGE Wave 2 Salt & Tobacco. Nutr Metab Cardiovasc Dis 27(9):784–791

    Article  CAS  PubMed  Google Scholar 

  63. Watanabe S, Konta T, Ichikawa K, Watanabe M, Ishizawa K, Ueno Y, Yamashita H, Kayama T, Kubota I (2019) The association between urinary sodium excretion and blood pressure in a community-based population: the Yamagata (Takahata) study. Clin Exp Nephrol 23(3):380–386

    Article  CAS  PubMed  Google Scholar 

  64. Welsh CE, Welsh P, Jhund P et al (2019) Urinary sodium excretion, blood pressure, and risk of future cardiovascular disease and mortality in subjects without prior cardiovascular disease. Hypertension 73(6):1202–1209

    Article  CAS  PubMed  Google Scholar 

  65. Lee SG, Lee W, Kwon OH, Kim JH (2013) Association of urinary sodium/creatinine ratio and urinary sodium/specific gravity unit ratio with blood pressure and hypertension: KNHANES 2009–2010. Clin Chim Acta 424:168–173

    Article  CAS  PubMed  Google Scholar 

  66. Oh SW, Han KH, Han SY, Koo HS, Kim S, Chin HJ (2015) Association of sodium excretion with metabolic syndrome, insulin resistance, and body fat. Medicine (Baltimore) 94(39):e1650

    Article  CAS  Google Scholar 

  67. Salgado E, Bes-Rastrollo M, de Irala J, Carmona L, Gomez-Reino JJ (2015) High sodium intake is associated with self-reported rheumatoid arthritis: a cross sectional and case control analysis within the SUN cohort. Medicine (Baltimore) 94(37):e924

    Article  CAS  Google Scholar 

  68. Wang S, Hou X, Liu Y, Lu H, Wei L, Bao Y, Jia W (2013) Serum electrolyte levels in relation to macrovascular complications in Chinese patients with diabetes mellitus. Cardiovasc Diabetol 12(1):146

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Rajagopal L, Ganesan V, Abdullah SM, Arunachalam S, Kathamuthu K, Ramraj B (2018) Exploring the interrelationship between electrolytes, anemia, and glycosylated hemoglobin (Hba1C) levels in type 2 diabetics. Asian J Pharm Clin Res 11(1):251–256

    Article  CAS  Google Scholar 

  70. Hu G, Jousilahti P, Peltonen M, Lindström J, Tuomilehto J (2005) Urinary sodium and potassium excretion and the risk of type 2 diabetes: a prospective study in Finland. Diabetologia 48(8):1477–1483

    Article  CAS  PubMed  Google Scholar 

  71. Wilson PW, D’Agostino RB, Parise H, Sullivan L, Meigs JB (2005) Metabolic syndrome as a precursor of cardiovascular disease and type 2 diabetes mellitus. Circulation 112(20):3066–3072

    Article  CAS  PubMed  Google Scholar 

  72. Yeung SLA, Schooling CM (2021) Impact of urinary sodium on cardiovascular disease and risk factors: a 2 sample Mendelian randomization study. Clin Nutr 40(4):1990–1996

    Article  CAS  Google Scholar 

  73. Wong MM, Arcand J, Leung AA, Thout SR, Campbell NR, Webster J (2017) The science of salt: a regularly updated systematic review of salt and health outcomes (December 2015–March 2016). J Clin Hypertens (Greenwich) 19(3):322–332

    Article  Google Scholar 

  74. Wang G, Zhang N, Wei Y-F et al (2015) The impact of high-salt exposure on cardiovascular development in the early chick embryo. J Exp Biol 218(21):3468–3477

    PubMed  Google Scholar 

  75. Gao L-R, Wang G, Zhang J et al (2018) High salt-induced excess reactive oxygen species production resulted in heart tube malformation during gastrulation. J Cell Physiol 233(9):7120–7133

    Article  CAS  PubMed  Google Scholar 

  76. Li J, Lu Y-P, Tsuprykov O et al (2018) Folate treatment of pregnant rat dams abolishes metabolic effects in female offspring induced by a paternal pre-conception unhealthy diet. Diabetologia 61(8):1862–1876

    Article  CAS  PubMed  Google Scholar 

  77. Laaksonen DE, Lakka HM, Niskanen LK, Kaplan GA, Salonen JT, Lakka TA (2002) Metabolic syndrome and development of diabetes mellitus: application and validation of recently suggested definitions of the metabolic syndrome in a prospective cohort study. Am J Epidemiol 156(11):1070–1077

    Article  PubMed  Google Scholar 

  78. Lanaspa MA, Kuwabara M, Andres-Hernando A et al (2018) High salt intake causes leptin resistance and obesity in mice by stimulating endogenous fructose production and metabolism. Proc Natl Acad Sci USA 115(12):3138–3143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Lee M, Sorn SR, Lee Y, Kang I (2019) Salt induces adipogenesis/lipogenesis and inflammatory adipocytokines secretion in adipocytes. Int J Mol Sci 20(1):160

    Article  PubMed Central  CAS  Google Scholar 

  80. Libuda L, Kersting M, Alexy U (2012) Consumption of dietary salt measured by urinary sodium excretion and its association with body weight status in healthy children and adolescents. Public Health Nutr 15(3):433–441

    Article  PubMed  Google Scholar 

  81. Yawar A, Jabbar A, Haque NU, Zuberi LM, Islam N, Akhtar J (2008) Hyponatraemia: etiology, management and outcome. J Coll Physicians Surg Pak 18(8):467–471

    PubMed  Google Scholar 

  82. Pfaffe T, Cooper-White J, Beyerlein P, Kostner K, Punyadeera C (2011) Diagnostic potential of saliva: current state and future applications. Clin Chem 57(5):675–687

    Article  CAS  PubMed  Google Scholar 

  83. Rathnayake N, Akerman S, Klinge B, Lundegren N, Jansson H, Tryselius Y, Sorsa T, Gustafsson A (2013) Salivary biomarkers for detection of systemic diseases. PLoS ONE 8(4):e61356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Conner S, Iranpour B, Mills J (1970) Alteration in parotid salivary flow in diabetes mellitus. Oral Surg Oral Med Oral Pathol 30(1):55–59

    Article  CAS  PubMed  Google Scholar 

  85. Elliott P, Brown I (2007) Sodium intakes around the world. World Health Organization, Geneva

  86. Leiba A, Vald A, Peleg E, Shamiss A, Grossman E (2005) Does dietary recall adequately assess sodium, potassium, and calcium intake in hypertensive patients? Nutrition 21(4):462–466

    Article  CAS  PubMed  Google Scholar 

  87. James WP, Ralph A, Sanchez-Castillo CP (1987) The dominance of salt in manufactured food in the sodium intake of affluent societies. Lancet 1(8530):426–429

    Article  CAS  PubMed  Google Scholar 

  88. Ljungman S, Aurell M, Hartford M, Wikstrand J, Wilhelmsen L, Berglund G (1981) Sodium excretion and blood pressure. Hypertension 3(3):318–326

    Article  CAS  PubMed  Google Scholar 

  89. Ji C, Sykes L, Paul C, Dary O, Legetic B, Campbell NR, Cappuccio FP (2012) Systematic review of studies comparing 24-hour and spot urine collections for estimating population salt intake. Rev Panam Salud Publica 32(4):307–315

    Article  PubMed  Google Scholar 

  90. Powles J, Fahimi S, Micha R, Khatibzadeh S, Shi P, Ezzati M, Engell RE, Lim SS, Danaei G, Mozaffarian D (2013) Global, regional and national sodium intakes in 1990 and 2010: a systematic analysis of 24 h urinary sodium excretion and dietary surveys worldwide. BMJ Open 3(12):e003733

    Article  PubMed  PubMed Central  Google Scholar 

  91. Wakasugi M, Kazama JJ, Narita I (2015) Associations between the intake of miso soup and Japanese pickles and the estimated 24-hour urinary sodium excretion: a population-based cross-sectional study. Intern Med 54(8):903–910

    Article  CAS  PubMed  Google Scholar 

  92. Malta D, Petersen KS, Johnson C et al (2018) High sodium intake increases blood pressure and risk of kidney disease. From the Science of Salt: a regularly updated systematic review of salt and health outcomes (August 2016 to March 2017). J Clin Hypertens (Greenwich) 20(12):1654–1665

    Article  CAS  Google Scholar 

  93. Sanada H, Jones JE, Jose PA (2011) Genetics of salt-sensitive hypertension. Curr Hypertens Rep 13(1):55–66

    Article  PubMed  PubMed Central  Google Scholar 

  94. Ames MK, Atkins CE, Pitt B (2019) The renin-angiotensin-aldosterone system and its suppression. J Vet Intern Med 33(2):363–382

    Article  PubMed  PubMed Central  Google Scholar 

  95. Lerchl K, Rakova N, Dahlmann A et al (2015) Agreement between 24-hour salt ingestion and sodium excretion in a controlled environment. Hypertension 66(4):850–857

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Iran University of Medical Sciences for providing facilities to search in electronic databases.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

RKM contributed to protocol design, search, data extraction, quality assessment and writing the manuscript. SS contributed to protocol design, search, data extraction, statistical analysis and revision of the manuscript. ZSC reviewed and edited the manuscript. ASA contributed to protocol design, statistical analysis and revision of the manuscript. All authors have seen and approved the final version.

Corresponding author

Correspondence to Amin Salehi-Abargouei.

Ethics declarations

Conflict of interest

No conflict of interest to declare.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 29 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolahdouz-Mohammadi, R., Soltani, S., Clayton, Z.S. et al. Sodium status is associated with type 2 diabetes mellitus: a systematic review and meta-analysis of observational studies. Eur J Nutr 60, 3543–3565 (2021). https://doi.org/10.1007/s00394-021-02595-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-021-02595-z

Keywords

Navigation