Skip to main content
Log in

Associations of dietary and lifestyle oxidative balance scores with mortality risk among older women: the Iowa Women’s Health Study

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

Substantial basic science evidence suggests that oxidative stress may play a role in aging-related health outcomes, including cardiovascular diseases (CVD) and cancer, and oxidative stress markers were linked with all-cause and cause-specific mortality in epidemiologic studies. However, the associations of many individual dietary and lifestyle anti-/pro-oxidant exposures with mortality are inconsistent. Oxidative balance scores (OBS) that incorporated multiple dietary and lifestyle factors were previously developed and reported to reflect the collective oxidative effects of multiple exposures.

Methods

We investigated associations of 11-component dietary and 4-component (physical activity, adiposity, alcohol, and smoking) lifestyle OBS (higher scores were considered more anti-oxidative) with all-cause and cause-specific mortality among women 55–69 years of age at baseline in the prospective Iowa Women’s Health Study (1986–2012). We assessed OBS-mortality associations using multivariable Cox proportional hazards regression.

Results

Of the 34,137 cancer-free women included in the analytic cohort, 18,058 died (4521 from cancer, and 6825 from CVD) during a mean/median 22.0/26.1 person-years of follow-up. Among participants in the highest relative to the lowest lifestyle OBS quintiles, the adjusted hazards ratios and their 95% confidence intervals for all-cause, all-cancer, and all-CVD mortality were 0.50 (0.48, 0.53), 0.47 (0.43, 0.52), and 0.54 (0.50, 0.58) (all Ptrend < 0.001), respectively. The associations of the dietary OBS with mortality were close to null.

Conclusion

Our findings, combined with results from previous studies, suggest that a predominance of antioxidant over pro-oxidant lifestyle exposures may be associated with lower all-cause, all-CVD, and all-cancer mortality risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Availability of data and material

Data from this study are available upon application to DeAnn Lazovich, PhD, MPH, Division of Epidemiology and Community Health, University of Minnesota, 1300 S 2nd St., Room 300 West Bank Office Building, Minneapolis, MN 55,454.

References

  1. Global status report on noncommunicable diseases 2014 (2014) World Health Organization

  2. Schottker B, Brenner H, Jansen EH et al (2015) Evidence for the free radical/oxidative stress theory of ageing from the CHANCES consortium: a meta-analysis of individual participant data. BMC Med 13:300. https://doi.org/10.1186/s12916-015-0537-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Salminen A, Ojala J, Kaarniranta K et al (2012) Mitochondrial dysfunction and oxidative stress activate inflammasomes: impact on the aging process and age-related diseases. Cell Mol Life Sci 69:2999–3013. https://doi.org/10.1007/s00018-012-0962-0

    Article  CAS  PubMed  Google Scholar 

  4. Schottker B, Saum KU, Jansen EH et al (2015) Oxidative stress markers and all-cause mortality at older age: a population-based cohort study. J Gerontol A Biol Sci Med Sci 70:518–524. https://doi.org/10.1093/gerona/glu111

    Article  CAS  PubMed  Google Scholar 

  5. Storz G, Imlayt JA (1999) Oxidative stress. Curr Opin Microbiol 2:188–194

    Article  CAS  Google Scholar 

  6. Sies H (1997) Oxidative stress: oxidants and antioxidants. Exp Physiol 82:291–295

    Article  CAS  Google Scholar 

  7. Gao X, Gao X, Zhang Y et al (2019) Oxidative stress and epigenetic mortality risk score: associations with all-cause mortality among elderly people. Eur J Epidemiol 34:451–462. https://doi.org/10.1007/s10654-019-00493-7

    Article  CAS  PubMed  Google Scholar 

  8. Kjaer LK, Cejvanovic V, Henriksen T et al (2017) Cardiovascular and all-cause mortality risk associated with urinary excretion of 8-oxoGuo, a biomarker for RNA oxidation, in patients with Type 2 Diabetes: A Prospective Cohort Study. Diabetes Care 40:1771–1778. https://doi.org/10.2337/dc17-1150

    Article  CAS  PubMed  Google Scholar 

  9. Masia M, Padilla S, Fernandez M et al (2016) Oxidative stress predicts all-cause mortality in HIV-infected patients. PLoS One 11:e0153456. https://doi.org/10.1371/journal.pone.0153456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Xuan Y, Gao X, Holleczek B et al (2018) Prediction of myocardial infarction, stroke and cardiovascular mortality with urinary biomarkers of oxidative stress: Results from a large cohort study. Int J Cardiol 273:223–229. https://doi.org/10.1016/j.ijcard.2018.08.002

    Article  PubMed  Google Scholar 

  11. Aune D, Keum N, Giovannucci E et al (2018) Dietary intake and blood concentrations of antioxidants and the risk of cardiovascular disease, total cancer, and all-cause mortality: a systematic review and dose-response meta-analysis of prospective studies. Am J Clin Nutr 108:1069–1091. https://doi.org/10.1093/ajcn/nqy097

    Article  PubMed  PubMed Central  Google Scholar 

  12. Dash C, Goodman M, Flanders WD et al (2013) Using pathway-specific comprehensive exposure scores in epidemiology: application to oxidative balance in a pooled case-control study of incident, sporadic colorectal adenomas. Am J Epidemiol 178:610–624. https://doi.org/10.1093/aje/kwt007

    Article  PubMed  PubMed Central  Google Scholar 

  13. Dash C, Bostick RM, Goodman M et al (2015) Oxidative balance scores and risk of incident colorectal cancer in a US prospective cohort study. Am J Epidemiol 181:584–594. https://doi.org/10.1093/aje/kwu318

    Article  PubMed  Google Scholar 

  14. Goodman M, Bostick RM, Dash C et al (2007) Hypothesis: oxidative stress score as a combined measure of pro-oxidant and antioxidant exposures. Ann Epidemiol 17:394–399. https://doi.org/10.1016/j.annepidem.2007.01.034

    Article  PubMed  Google Scholar 

  15. Goodman M, Bostick RM, Dash C et al (2008) A summary measure of pro- and anti-oxidant exposures and risk of incident, sporadic, colorectal adenomas. Cancer Causes Control 19:1051–1064. https://doi.org/10.1007/s10552-008-9169-y

    Article  PubMed  Google Scholar 

  16. Hernandez-Ruiz A, Garcia-Villanova B, Guerra-Hernandez E et al (2019) A review of a priori defined oxidative balance scores relative to their components and impact on health outcomes. Nutrients. https://doi.org/10.3390/nu11040774

    Article  PubMed  PubMed Central  Google Scholar 

  17. Terry P, Lagergren J, Ye W et al (2000) Antioxidants and cancers of the esophagus and gastric cardia. Int J Cancer 87:750–754

    Article  CAS  Google Scholar 

  18. Wright ME, Mayne ST, Stolzenberg-Solomon RZ et al (2004) Development of a comprehensive dietary antioxidant index and application to lung cancer risk in a cohort of male smokers. Am J Epidemiol 160:68–76. https://doi.org/10.1093/aje/kwh173

    Article  PubMed  Google Scholar 

  19. Slattery ML, John EM, Torres-Mejia G et al (2014) Angiogenesis genes, dietary oxidative balance and breast cancer risk and progression: the Breast Cancer Health Disparities Study. Int J Cancer 134:629–644. https://doi.org/10.1002/ijc.28377

    Article  CAS  PubMed  Google Scholar 

  20. Kong SY, Goodman M, Judd S et al (2015) Oxidative balance score as predictor of all-cause, cancer, and noncancer mortality in a biracial US cohort. Ann Epidemiol 25(256–262):e251. https://doi.org/10.1016/j.annepidem.2015.01.004

    Article  Google Scholar 

  21. Van Hoydonck PG, Temme EH, Schouten EG (2002) A dietary oxidative balance score of vitamin C, β-Carotene and iron intakes and mortality risk in male smoking Belgians. Nutr J 132:756–761

    Article  Google Scholar 

  22. Folsom A, Kaye S, Potter J et al (1989) Association of incident carcinoma of the endometrium with body weight and fat distribution in older women: early findings of the Iowa Women’s Health Study. Cancer Res 49:6828–6831

    CAS  PubMed  Google Scholar 

  23. Munger R, Folsom A, Kushi L et al (1992) Dietary assessment of older Iowa women with a food frequency questionnaire: nutrient intake, reproducibility, and comparison with 24-hour dietary recall interviews. Am J Epidemiol 136:192–200

    Article  CAS  Google Scholar 

  24. Kushi L, Fee R, Folsom A et al (1997) Physical activity and mortality in postmenopausal women. J Am Med Assoc 277:1287–1292

    Article  CAS  Google Scholar 

  25. Kadiiska MB, Gladen BC, Baird DD et al (2005) Biomarkers of oxidative stress study II: are oxidation products of lipids, proteins, and DNA markers of CCl4 poisoning? Free Radic Biol Med 38:698–710. https://doi.org/10.1016/j.freeradbiomed.2004.09.017

    Article  CAS  PubMed  Google Scholar 

  26. Kadiiska MB, Gladen BC, Baird DD et al (2005) Biomarkers of oxidative stress study III. Effects of the nonsteroidal anti-inflammatory agents indomethacin and meclofenamic acid on measurements of oxidative products of lipids in CCl4 poisoning. Free Radic Biol Med 38:711–718. https://doi.org/10.1016/j.freeradbiomed.2004.10.024

    Article  CAS  PubMed  Google Scholar 

  27. Milne GL, Musiek ES, Morrow JD (2008) F2-Isoprostanes as markers of oxidative stressin vivo: An overview. Biomarkers 10:10–23. https://doi.org/10.1080/13547500500216546

    Article  CAS  Google Scholar 

  28. Czerska M, Zielinski M, Gromadzinska J (2016) Isoprostanes - A novel major group of oxidative stress markers. Int J Occup Med Environ Health 29:179–190. https://doi.org/10.13075/ijomeh.1896.00596

    Article  PubMed  Google Scholar 

  29. Gray R (1988) A class of K-sample tests for comparing the cumulative incidence of a competing risk. Ann Stat 16:1141–1154

    Article  Google Scholar 

  30. Shaper AG, Wannamethee G, Walker M (1988) Alcohol and mortality in British men: explaining the U-shaped curve. The Lancet 332:1267–1273

    Article  Google Scholar 

  31. Rao AV, Ray MR, Rao LG (2006) Lycopene. Adv Food Nutr Res. https://doi.org/10.1016/s1043-4526(06)51002-2

    Article  PubMed  Google Scholar 

  32. Rao AV, Rao LG (2007) Carotenoids and human health. Pharmacol Res 55:207–216. https://doi.org/10.1016/j.phrs.2007.01.012

    Article  CAS  PubMed  Google Scholar 

  33. Kojo S (2004) Vitamin C: basic metabolism and its function as an index of oxidative stress. Curr Med Chem 11:1041–1064. https://doi.org/10.2174/0929867043455567

    Article  CAS  PubMed  Google Scholar 

  34. Burton G, Ingold K (1989) Vitamin E as an in vitro and in vivo antioxidant. Ann N Y Acad Sci 570:7–22

    Article  CAS  Google Scholar 

  35. Rayman MP (2005) Selenium in cancer prevention: a review of the evidence and mechanism of action. Proc Nutr Soc 64:527–542. https://doi.org/10.1079/pns2005467

    Article  CAS  PubMed  Google Scholar 

  36. Takahashi M, Tsuboyama-Kasaoka N, Nakatani T et al (2002) Fish oil feeding alters liver gene expressions to defend against PPARα activation and ROS production. Am J Physiol Gastrointest Liver Physiol 282:G338-348

    Article  CAS  Google Scholar 

  37. van Beelen VA, Aarts JM, Reus A et al (2006) Differential induction of electrophile-responsive element-regulated genes by n-3 and n-6 polyunsaturated fatty acids. FEBS Lett 580:4587–4590. https://doi.org/10.1016/j.febslet.2006.07.028

    Article  CAS  PubMed  Google Scholar 

  38. Fraga CG (2007) Plant polyphenols: how to translate their in vitro antioxidant actions to in vivo conditions. IUBMB Life 59:308–315. https://doi.org/10.1080/15216540701230529

    Article  CAS  PubMed  Google Scholar 

  39. Silva MM, Santos MR, Caroço G et al (2009) Structure-antioxidant activity relationships of flavonoids: A Re-examination. Free Radical Res 36:1219–1227. https://doi.org/10.1080/198-1071576021000016472

    Article  Google Scholar 

  40. Menaa F, Badole S, Menaa B et al (2012) Polyphenols, promising therapeutics for inflammatory diseases. Bioactive food as dietary interventions for arthritis and related inflammatory diseases, bioactive food in chronic disease states, 1st edn. Academic Press, Cambridge, pp 421-428.

    Google Scholar 

  41. Menaa F, Menaa A, Tréton J (2014) Polyphenols against skin aging. In; Polyphenols in Human Health and Disease. Elsevier, pp 819–830

  42. Ji LL, Gomez-Cabrera MC, Vina J (2006) Exercise and hormesis: activation of cellular antioxidant signaling pathway. Ann N Y Acad Sci 1067:425–435. https://doi.org/10.1196/annals.1354.061

    Article  CAS  PubMed  Google Scholar 

  43. Tappel A (2007) Heme of consumed red meat can act as a catalyst of oxidative damage and could initiate colon, breast and prostate cancers, heart disease and other diseases. Med Hypotheses 68:562–564. https://doi.org/10.1016/j.mehy.2006.08.025

    Article  CAS  PubMed  Google Scholar 

  44. Toborek M, Barger SW, Mattson MP et al (1996) Linoleic acid and TNF-alpha cross-amplify oxidative injury and dysfunction of endothelial cells. J Lipid Res 37:123–135

    Article  CAS  Google Scholar 

  45. Ghosh S, Kewalramani G, Yuen G et al (2006) Induction of mitochondrial nitrative damage and cardiac dysfunction by chronic provision of dietary omega-6 polyunsaturated fatty acids. Free Radic Biol Med 41:1413–1424. https://doi.org/10.1016/j.freeradbiomed.2006.07.021

    Article  CAS  PubMed  Google Scholar 

  46. Venturi M, Hambly RJ, Glinghammar B et al (1997) Genotoxic activity in human faecal water and the role of bile acids: a study using the alkaline comet assay. Carcinogenesis 18:2353–2359

    Article  CAS  Google Scholar 

  47. Rosignoli P, Fabiani R, De Bartolomeo A et al (2008) Genotoxic effect of bile acids on human normal and tumour colon cells and protection by dietary antioxidants and butyrate. Eur J Nutr 47:301–309. https://doi.org/10.1007/s00394-008-0725-8

    Article  CAS  PubMed  Google Scholar 

  48. Furukawa S, Fujita T, Shimabukuro M et al (2004) Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin Investig 114:1752–1761. https://doi.org/10.1172/jci21625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Vaart HV, Postma DS, Timens W et al (2004) Acute effects of cigarette smoke on inflammation and oxidative stress: a review. Thorax 59:713–721. https://doi.org/10.1136/thx.2003.012468

    Article  PubMed  PubMed Central  Google Scholar 

  50. Thaiparambil JT, Vadhanam MV, Srinivasan C et al (2007) Time-dependent formation of 8-oxo-deoxyguanosine in the lungs of mice exposed to cigarette smoke. Chem Res Toxicol 20:1737–1740

    Article  CAS  Google Scholar 

  51. Wu D, Zhai Q, Shi X (2006) Alcohol-induced oxidative stress and cell responses. J Gastroenterol Hepatol 21(Suppl 3):S26-29. https://doi.org/10.1111/j.1440-1746.2006.04589.x

    Article  CAS  PubMed  Google Scholar 

  52. Das SK, Vasudevan DM (2007) Alcohol-induced oxidative stress. Life Sci 81:177–187. https://doi.org/10.1016/j.lfs.2007.05.005

    Article  CAS  PubMed  Google Scholar 

  53. Ford ES, Bergmann MM, Boeing H et al (2012) Healthy lifestyle behaviors and all-cause mortality among adults in the United States. Prev Med 55:23–27. https://doi.org/10.1016/j.ypmed.2012.04.016

    Article  PubMed  PubMed Central  Google Scholar 

  54. Petersen KE, Johnsen NF, Olsen A et al (2015) The combined impact of adherence to five lifestyle factors on all-cause, cancer and cardiovascular mortality: a prospective cohort study among Danish men and women. Br J Nutr 113:849–858. https://doi.org/10.1017/S0007114515000070

    Article  CAS  PubMed  Google Scholar 

  55. Veronese N, Li Y, Manson JE et al (2016) Combined associations of body weight and lifestyle factors with all cause and cause specific mortality in men and women: prospective cohort study. BMJ 355:i5855. https://doi.org/10.1136/bmj.i5855

    Article  PubMed  PubMed Central  Google Scholar 

  56. Lee I, Kim S, Kang H (2019) Lifestyle risk factors and all-cause and cardiovascular disease mortality: data from the korean longitudinal study of aging. Int J Environ Res Public Health. https://doi.org/10.3390/ijerph16173040

    Article  PubMed  PubMed Central  Google Scholar 

  57. Loef M, Walach H (2012) The combined effects of healthy lifestyle behaviors on all cause mortality: a systematic review and meta-analysis. Prev Med 55:163–170. https://doi.org/10.1016/j.ypmed.2012.06.017

    Article  PubMed  Google Scholar 

  58. Knoops KTB, Groot LCPGMd, Kromhout D et al (2004) Mediterranean diet, lifestyle factors, and 10-year mortality in elderly european men and women. JAMA 294:1433–1439

    Article  Google Scholar 

  59. Ding D, Rogers K, van der Ploeg H et al (2015) Traditional and emerging lifestyle risk behaviors and all-cause mortality in middle-aged and older adults: evidence from a large population-based Australian Cohort. PLoS Med 12:e1001917. https://doi.org/10.1371/journal.pmed.1001917

    Article  PubMed  PubMed Central  Google Scholar 

  60. Hulsegge G, Looman M, Smit HA et al (2016) Lifestyle changes in young adulthood and middle age and risk of cardiovascular disease and all-cause mortality: The Doetinchem Cohort Study. J Am Heart Assoc. https://doi.org/10.1161/JAHA.115.002432

    Article  PubMed  PubMed Central  Google Scholar 

  61. Yun JE, Won S, Kimm H et al (2012) Effects of a combined lifestyle score on 10-year mortality in Korean men and women: a prospective cohort study. BMC Public Health 12:673

    Article  Google Scholar 

  62. Shivappa N, Godos J, Hebert JR et al (2018) Dietary inflammatory index and cardiovascular risk and mortality-a meta-analysis. Nutrients. https://doi.org/10.3390/nu10020200

    Article  PubMed  PubMed Central  Google Scholar 

  63. Garcia-Arellano A, Martinez-Gonzalez MA, Ramallal R et al (2019) Dietary inflammatory index and all-cause mortality in large cohorts: The SUN and PREDIMED studies. Clin Nutr 38:1221–1231. https://doi.org/10.1016/j.clnu.2018.05.003

    Article  PubMed  Google Scholar 

  64. Park SY, Kang M, Wilkens LR et al (2018) The dietary inflammatory index and all-cause, cardiovascular disease, and cancer mortality in the multiethnic Cohort Study. Nutrients. https://doi.org/10.3390/nu10121844

    Article  PubMed  PubMed Central  Google Scholar 

  65. Bonaccio M, Di Castelnuovo A, Pounis G et al (2016) A score of low-grade inflammation and risk of mortality: prospective findings from the Moli-sani study. Haematologica 101:1434–1441. https://doi.org/10.3324/haematol.2016.144055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Shivappa N, Steck SE, Hurley TG et al (2014) Designing and developing a literature-derived, population-based dietary inflammatory index. Public Health Nutr 17:1689–1696. https://doi.org/10.1017/S1368980013002115

    Article  PubMed  Google Scholar 

  67. Byrd DA, Judd SE, Flanders WD et al (2019) Development and validation of novel dietary and lifestyle inflammation scores. J Nutr 149:2206–2218. https://doi.org/10.1093/jn/nxz165

    Article  PubMed  PubMed Central  Google Scholar 

  68. Whalen KA, Judd S, McCullough ML et al (2017) Paleolithic and mediterranean diet pattern scores are inversely associated with all-cause and cause-specific mortality in adults. J Nutr 147:612–620. https://doi.org/10.3945/jn.116.241919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Mitrou PN, Kipnis V, Thiébaut ACM et al (2007) Mediterranean dietary pattern and prediction of all-cause mortality in a US population: results from the NIH-AARP Diet and Health Study. Arch Intern Med 167:2461–2468. https://doi.org/10.1001/archinte.167.22.2461

    Article  PubMed  Google Scholar 

  70. Tognon G, Lissner L, Saebye D et al (2014) The Mediterranean diet in relation to mortality and CVD: a Danish cohort study. Br J Nutr 111:151–159. https://doi.org/10.1017/S0007114513001931

    Article  CAS  PubMed  Google Scholar 

  71. Tognon G, Nilsson LM, Lissner L et al (2012) The Mediterranean diet score and mortality are inversely associated in adults living in the subarctic region. J Nutr 142:1547–1553. https://doi.org/10.3945/jn.112.160499

    Article  CAS  PubMed  Google Scholar 

  72. Cheng E, Um CY, Prizment A et al (2018) Associations of evolutionary-concordance diet, Mediterranean diet and evolutionary-concordance lifestyle pattern scores with all-cause and cause-specific mortality. Br J Nutr https://doi.org/10.1017/S0007114518003483

  73. Cheng E, Um CY, Prizment AE et al (2018) Evolutionary-concordance lifestyle and diet and mediterranean diet pattern scores and risk of incident colorectal cancer in iowa women. Cancer Epidemiol Biomarkers Prev 27:1195–1202. https://doi.org/10.1158/1055-9965.EPI-17-1184

    Article  PubMed  PubMed Central  Google Scholar 

  74. Morris BJ, Willcox BJ, Donlon TA (2019) Genetic and epigenetic regulation of human aging and longevity. Biochim Biophys Acta Mol Basis Dis 1865:1718–1744. https://doi.org/10.1016/j.bbadis.2018.08.039

    Article  CAS  PubMed  Google Scholar 

  75. Sinner P, Folsom AR, Harnack L et al (2006) The association of physical activity with lung cancer incidence in a cohort of older women: the Iowa Women’s Health Study. Cancer Epidemiol Biomarkers Prev 15:2359–2363. https://doi.org/10.1158/1055-9965.EPI-06-0251

    Article  PubMed  Google Scholar 

  76. A B, LC H, CM V, et al (2006) Recreational physical activity and risk of postmenopausal breast cancer based on hormone receptor status. Arch Intern Med 166:2478–2483

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Cancer Institute at the National Institutes of Health under Grant R01 CA039742, and the Wilson P. and Anne W. Franklin Foundation. None of the funding agencies had any role in the conduct of the study; collection, management, analysis, or interpretation of the data; or preparation, review, or approval of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design, data interpretation, and manuscript writing. R.M.B. and Z.M. were primarily responsible for the project conception and design. D.L. and A.E.P. collected the data. Z.M. and R.M.B. were primarily responsible for analyzing and interpreting the data and writing the manuscript. R.M.B. supervised the analysis project and manuscript writing. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Roberd M. Bostick.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethics approval

The study was approved by the Minnesota Institutional Review Board (IRB), and the current analysis was approved by the Emory University IRB.

Consent to participate

All participants provided written informed consent.

Code availability

The code supporting this current study is available from the corresponding author upon request.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3209 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao, Z., Prizment, A.E., Lazovich, D. et al. Associations of dietary and lifestyle oxidative balance scores with mortality risk among older women: the Iowa Women’s Health Study. Eur J Nutr 60, 3873–3886 (2021). https://doi.org/10.1007/s00394-021-02557-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-021-02557-5

Keywords

Navigation