Skip to main content
Log in

Effect of the intake of dietary protein on insulin resistance in subjects with obesity: a randomized controlled clinical trial

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

We compared the effect of diets with different amounts and sources of dietary protein on insulin sensitivity (IS) in subjects with obesity and insulin resistance (IR).

Methods

Eighty subjects with obesity (BMI ≥ 30 kg/m2) and IR (Matsuda index < 4.3 and HOMA-IR ≥ 2.5) over 18 years old were randomized to four groups for a one-month period: a normal protein diet (< 20%) with a predominance of animal protein (Animal NP) or vegetable protein (Vegetable NP) and a high-protein diet (25–30%) with a predominance of animal protein (Animal HP) or vegetable protein (Vegetable HP). Baseline and final measurements of body weight, body composition, biochemical parameters, blood pressure (BP), resting energy expenditure and plasma amino acid profiles were performed.

Results

Body weight, BMI and waist circumference decreased in all groups. Interestingly, the IS improved more in the Animal HP (Matsuda index; 1.39 vs 2.58, P = 0.003) and in the Vegetable HP groups (Matsuda index; 1.44 vs 3.14, P < 0.0001) after one month. The fat mass, triglyceride levels, C-reactive protein levels and the leptin/adiponectin index decreased; while, the skeletal muscle mass increased in the Animal and Vegetable HP groups. The BP decreased in all groups except the Animal NP group.

Conclusion

Our study demonstrates that a high-protein hypocaloric diets improves IS by 60–90% after one month in subjects with obesity and IR, regardless of weight loss and the source of protein, either animal or vegetable.

Trial registration

The trial is registered at clinicaltrials.gov (NCT03627104), August 13, 2018.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Data are available upon reasonable request. Data are available upon request to the correspondent author. Open access.

References

  1. Kirk EP, Klein S (2009) Pathogenesis and pathophysiology of the cardiometabolic syndrome. J Clin Hypertens (Greenwich) 11:761–765. https://doi.org/10.1111/j.1559-4572.2009.00054.x

    Article  CAS  Google Scholar 

  2. Kahn BB, Flier JS (2000) Obesity and insulin resistance. J Clin Investig 106:473–481. https://doi.org/10.1172/JCI10842

    Article  CAS  PubMed  Google Scholar 

  3. Antuna-Puente B, Disse E, Rabasa-Lhoret R, Laville M, Capeau J, Bastard JP (2011) How can we measure insulin sensitivity/resistance? Diabetes Metab 37:179–188. https://doi.org/10.1016/j.diabet.2011.01.002

    Article  CAS  PubMed  Google Scholar 

  4. Klein S (2001) Outcome success in obesity. Obes Res 9:354S-358S. https://doi.org/10.1038/oby.2001.142

    Article  PubMed  Google Scholar 

  5. Jensen MD, Ryan DH, Apovian CM et al (2014) 2013 AHA/ACC/TOS guideline for the management of overweight and obesity in adults: a report of the American College of Cardiology/American Heart Association Task Force on practice guidelines and the obesity society. Circulation 129:S102–S138. https://doi.org/10.1161/01.cir.0000437739.71477.ee

    Article  PubMed  Google Scholar 

  6. Leidy HJ, Carnell NS, Mattes RD, Campbell WW (2007) Higher protein intake preserves lean mass and satiety with weight loss in pre-obese and obese women. Obesity (Silver Spring) 15:421–429. https://doi.org/10.1038/oby.2007.531

    Article  CAS  Google Scholar 

  7. Linn T, Geyer R, Prassek S, Laube H (1996) Effect of dietary protein intake on insulin secretion and glucose metabolism in insulin-dependent diabetes mellitus. J Clin Endocrinol Metab 81:3938–3943. https://doi.org/10.1210/jcem.81.11.8923841

    Article  CAS  PubMed  Google Scholar 

  8. Krebs M, Krssak M, Bernroider E, Anderwald C, Brehm A, Meyerspeer M, Nowotny P, Roth E, Waldhäusl W, Roden M (2002) Mechanism of amino acid-induced skeletal muscle insulin resistance in humans. Diabetes 51:599–605. https://doi.org/10.2337/diabetes.51.3.599

    Article  CAS  PubMed  Google Scholar 

  9. Weickert MO, Roden M, Isken F et al (2011) Effects of supplemented isoenergetic diets differing in cereal fiber and protein content on insulin sensitivity in overweight humans. Am J Clin Nutr 94:459–471. https://doi.org/10.3945/ajcn.110.004374

    Article  CAS  PubMed  Google Scholar 

  10. Smith GI, Yoshino J, Kelly SC, Reeds DN, Okunade A, Patterson BW, Klein S, Mittendorfer B (2016) High-protein intake during weight loss therapy eliminates the weight-loss-induced improvement in insulin action in obese postmenopausal women. Cell Rep 17:849–861. https://doi.org/10.1016/j.celrep.2016.09.047

    Article  CAS  PubMed  Google Scholar 

  11. Wycherley TP, Moran LJ, Clifton PM, Noakes M, Brinkworth GD (2012) Effects of energy-restricted high-protein, low-fat compared with standard-protein, low-fat diets: a meta-analysis of randomized controlled trials. Am J Clin Nutr 96:1281–1298. https://doi.org/10.3945/ajcn.112.044321

    Article  CAS  PubMed  Google Scholar 

  12. Rietman A, Schwarz J, Tomé D, Kok FJ, Mensink M (2014) High dietary protein intake, reducing or eliciting insulin resistance? Eur J Clin Nutr 68:973–979. https://doi.org/10.1038/ejcn.2014.123

    Article  CAS  PubMed  Google Scholar 

  13. Schwingshackl L, Hoffmann G (2013) Long-term effects of low-fat diets either low or high in protein on cardiovascular and metabolic risk factors: a systematic review and meta-analysis. Nutr J 12:48. https://doi.org/10.1186/1475-2891-12-48

    Article  CAS  PubMed  Google Scholar 

  14. Torres N, Tovar AR (2007) The role of dietary protein on lipotoxicity. Nutr Rev 65:S64–S68. https://doi.org/10.1111/j.1753-4887.2007.tb00330.x

    Article  PubMed  Google Scholar 

  15. Ley SH, Sun Q, Willett WC, Eliassen AH, Wu K, Pan A, Grodstein F, Hu FB (2014) Associations between red meat intake and biomarkers of inflammation and glucose metabolism in women. Am J Clin Nutr 99:352–360. https://doi.org/10.3945/ajcn.113.075663

    Article  CAS  PubMed  Google Scholar 

  16. Fretts AM, Follis JL, Nettleton JA et al (2015) Consumption of meat is associated with higher fasting glucose and insulin concentrations regardless of glucose and insulin genetic risk scores: a meta-analysis of 50,345 Caucasians. Am J Clin Nutr 102:1266–1278. https://doi.org/10.3945/ajcn.114.101238

    Article  CAS  PubMed  Google Scholar 

  17. López AM, Noriega LG, Diaz M, Torres N, Tovar AR (2015) Plasma branched-chain and aromatic amino acid concentration after ingestion of an urban or rural diet in rural Mexican women. BMC Obes 2:8. https://doi.org/10.1186/s40608-015-0038-4

    Article  PubMed  Google Scholar 

  18. Tucker LA, LeCheminant JD, Bailey BW (2015) Meat intake and insulin resistance in women without type 2 diabetes. J Diabetes Res 2015:174742. https://doi.org/10.1155/2015/174742

    Article  PubMed  PubMed Central  Google Scholar 

  19. Newgard CB, An J, Bain JR et al (2009) A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab 9:311–326. https://doi.org/10.1016/j.cmet.2009.02.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang TJ, Larson MG, Vasan RS et al (2011) Metabolite profiles and the risk of developing diabetes. Nat Med 17:448–453. https://doi.org/10.1038/nm.2307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Felig P, Marliss E, Cahill GF Jr (1969) Plasma amino acid levels and insulin secretion in obesity. N Engl J Med 281:811–816. https://doi.org/10.1056/nejm196910092811503

    Article  CAS  PubMed  Google Scholar 

  22. Almeda-Valdes P, Cuevas-Ramos D, Mehta R, Gomez-Perez FJ, Cruz-Bautista I, Arellano-Campos O, Navarrete-Lopez M, Aguilar-Salinas CA (2010) Total and high molecular weight adiponectin have similar utility for the identification of insulin resistance. Cardiovasc Diabetol 9:26. https://doi.org/10.1186/1475-2840-9-26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Takahara M, Katakami N, Kaneto H, Noguchi M, Shimomura I (2013) Distribution of the Matsuda Index in Japanese healthy subjects. J Diabetes Investig 4:369–371. https://doi.org/10.1111/jdi.12056

    Article  PubMed  PubMed Central  Google Scholar 

  24. Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF 3rd, Feldman HI, Kusek JW, Eggers P, Van Lente F, Greene T, Coresh J, CKD-EPI (2009) A new equation to estimate glomerular filtration rate. Ann Intern Med 150:604–612. https://doi.org/10.7326/0003-4819-150-9-200905050-00006

    Article  PubMed  PubMed Central  Google Scholar 

  25. National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) (2002) Third report of the national cholesterol education program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III) final report. Circulation 106:3143–3421. https://doi.org/10.1161/circ.106.25.3143

    Article  Google Scholar 

  26. Matsuda M, DeFronzo RA (1999) Insulin sensitivity indices obtained from oral glucose tolerance testing: comparison with the euglycemic insulin clamp. Diabetes Care 22:1462–1470. https://doi.org/10.2337/diacare.22.9.1462

    Article  CAS  PubMed  Google Scholar 

  27. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC (1985) Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28:412–419. https://doi.org/10.1007/bf00280883

    Article  CAS  PubMed  Google Scholar 

  28. Lohman T, Roche A, Martorell R (1988) Anthropometric standardization reference manual. Human Kinetics Publishers, Champaign

    Google Scholar 

  29. Weir JB (1949) New methods for calculating metabolic rate with special reference to protein metabolism. J Physiol 109:1–9. https://doi.org/10.1113/jphysiol.1949.sp004363

    Article  PubMed  Google Scholar 

  30. Orozco-Ruiz X, Pichardo-Ontiveros E, Tovar AR, Torres N, Medina-Vera I, Prinelli F, Lafortuna CL, Guevara-Cruz M (2018) Development and validation of new predictive equation for resting energy expenditure in adults with overweight and obesity. Clin Nutr 37:2198–2205. https://doi.org/10.1016/j.clnu.2017.10.022

    Article  PubMed  Google Scholar 

  31. O’Connor S, Julien P, Weisnagel SJ, Gagnon C, Rudkowska I (2019) Impact of a high intake of dairy product on insulin sensitivity in hyperinsulinemic adults: a crossover randomized controlled trial. Curr Dev Nutr 3:nzz083. https://doi.org/10.1093/cdn/nzz083

    Article  PubMed  Google Scholar 

  32. Wolever TM, Jenkins DJ, Jenkins AL, Josse RG (1991) The glycemic index: methodology and clinical implications. Am J Clin Nutr 54:846–854. https://doi.org/10.1093/ajcn/54.5.846

    Article  CAS  PubMed  Google Scholar 

  33. Abete I, Parra D, Martinez JA (2009) Legume-, fish-, or high-protein-based hypocaloric diets: effects on weight loss and mitochondrial oxidation in obese men. J Med Food 12:100–108. https://doi.org/10.1089/jmf.2007.0700

    Article  CAS  PubMed  Google Scholar 

  34. Sucher S, Markova M, Hornemann S, Pivovarova O, Rudovich N, Thomann R, Schneeweiss R, Rohn S, Pfeiffer AFH (2017) Comparison of the effects of diets high in animal or plant protein on metabolic and cardiovascular markers in type 2 diabetes: a randomized clinical trial. Diabetes Obes Metab 19:944–952. https://doi.org/10.1111/dom.12901

    Article  CAS  PubMed  Google Scholar 

  35. Hill AM, Jackson KAH, Roussell MA, West SG, Kris-Etherton PM (2015) Type and amount of dietary protein in the treatment of metabolic syndrome: a randomized controlled trial. Am J Clin Nutr 102:757–770. https://doi.org/10.3945/ajcn.114.104026

    Article  CAS  PubMed  Google Scholar 

  36. Serralde-Zúñiga AE, Guevara-Cruz M, Tovar AR, Herrera-Hernández MF, Noriega LG, Granados O, Torres N (2014) Omental adipose tissue gene expression, gene variants, branched-chain amino acids, and their relationship with metabolic syndrome and insulin resistance in humans. Genes Nutr 9:431. https://doi.org/10.1007/s12263-014-0431-5

    Article  CAS  PubMed  Google Scholar 

  37. Cani PD, Amar J, Iglesias MA et al (2007) Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 56:1761–1772. https://doi.org/10.2337/db06-1491

    Article  CAS  PubMed  Google Scholar 

  38. Heianza Y, Sun D, Smith SR, Bray GA, Sacks FM, Qi L (2018) Changes in gut microbiota-related metabolites and long-term successful weight loss in response to weight-loss diets: the POUNDS lost trial. Diabetes Care 41:413–419. https://doi.org/10.2337/dc17-2108

    Article  CAS  PubMed  Google Scholar 

  39. Beaumont M, Portune KJ, Steuer N et al (2017) Quantity and source of dietary protein influence metabolite production by gut microbiota and rectal mucosa gene expression: a randomized, parallel, double-blind trial in overweight humans. Am J Clin Nutr 106:1005–1019. https://doi.org/10.3945/ajcn.117.158816

    Article  CAS  PubMed  Google Scholar 

  40. van den Munckhof ICL, Kurilshikov A, Ter Horst R, Riksen NP, Joosten LAB, Zhernakova A, Fu J, Keating ST, Netea MG, de Graaf J, Rutten JHW (2018) Role of gut microbiota in chronic low-grade inflammation as potential driver for atherosclerotic cardiovascular disease: a systematic review of human studies. Obes Rev 19:1719–1734. https://doi.org/10.1111/obr.12750

    Article  PubMed  Google Scholar 

  41. Abdul-Ghani MA, Matsuda M, Balas B, DeFronzo RA (2007) Muscle and liver insulin resistance indexes derived from the oral glucose tolerance test. Diabetes Care 30:89–94. https://doi.org/10.2337/dc06-1519

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Griselda Puerto-Avila (department secretary) for assistance and support in the billing of the food pantries delivered to the participants and chemist Guillermo Ordaz-Nava, INCMNSZ Mexico City, for all the technical support in this study.

Funding

This study was supported by Consejo Nacional de Ciencia y Tecnología (México) Grant: CONACYT PN- 2016-01-3324.

Author information

Authors and Affiliations

Authors

Contributions

MGC, ART, LGNL conceived of and designed the study. BPG, AVM, and MGC developed the menus and recipe booklets. LEGS, PKHGC, AVM, MGC, and BPG developed and handled the logistics of the food pantries. LEGS, EPO, AVM, KGHG, LAS, AESZ, GCL, CZL, RGH, and MGC assisted with participant inclusion and follow-up. LEGS, KGHG, PKHGC, AVM, MGC, and AAN determined the biochemical parameters. OGP, RGH, AFL determined the AA concentrations by HPLC. IMV performed the statistical analyses. ART, LEGS, AESZ, BPG, IMV, NT, and MGC completed the data interpretation. ART, LEGS, IMV, JGRG, and MGC wrote the draft manuscript. All authors have seen and approved the final version of the manuscript.

Corresponding authors

Correspondence to Armando R. Tovar or Martha Guevara-Cruz.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

The study was performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments. This protocol was approved by the ethics committee of the Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (reference 2373). Written informed consent was obtained from all patients prior to their inclusion in the study.

Consent to participate

All participants signed the consent statement prior to their inclusion in the study.

Consent for publication

This manuscript is not being simultaneously submitted elsewhere and no portion of the data has been published elsewhere.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 723 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

González-Salazar, L.E., Pichardo-Ontiveros, E., Palacios-González, B. et al. Effect of the intake of dietary protein on insulin resistance in subjects with obesity: a randomized controlled clinical trial. Eur J Nutr 60, 2435–2447 (2021). https://doi.org/10.1007/s00394-020-02428-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-020-02428-5

Keywords

Navigation