Skip to main content
Log in

Beneficial effects of mung bean seed coat on the prevention of high-fat diet-induced obesity and the modulation of gut microbiota in mice

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

Our recent study has reported that whole mung bean showed better beneficial effects on high-fat diet (HFD)-induced obesity and gut microbiota disorders when compared with the decorticated mung bean at the same intervention dose level, suggesting that the mung bean seed coat (MBC) may play a crucial role in its health benefits. This study aims to investigate whether MBC has beneficial benefits on the prevention of HFD-induced obesity and the modulation of gut microbiota in mice when it was supplemented in HFD.

Methods

Herein, male C57BL/6 J mice were fed with normal control diet, HFD, and HFD supplemented with MBC (3–6%, w/w) for 12 weeks. The changes in physiological, histological, biochemical parameters, serum endotoxin, proinflammatory cytokines, and gut microbiota composition of mice were determined to assess the ability of MBC to alleviate HFD-induced obesity and modulate gut microbiota disorders in mice.

Results

MBC supplementation exhibited significant reductions in the HFD-induced adiposity, fat accumulation, serum lipid levels, lipopolysaccharide, and proinflammatory cytokines concentrations (P < 0.05), which was accompanied by improvements in hepatic steatosis and adipocyte size. Especially, the elevated fasting blood glucose and insulin resistance were also significantly improved by MBC supplementation (P < 0.05). Furthermore, high-throughput sequencing of the 16S rRNA gene revealed that MBC could normalize HFD-induced gut microbiota dysbiosis. MBC not only could promote the bloom of Akkermansia, but also restore several HFD-dependent taxa (Blautia, Ruminiclostridium_9, Bilophila, and unclassified_f_Ruminococcaceae) back to normal status, co-occurring with the decreases in obesity-related indices.

Conclusions

This study provides evidence that MBC may be mainly responsible for the beneficial effects of whole mung bean on preventing the HFD-induced changes, thus enlarging the application value of MBC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Rebello CJ, Greenway FL, Finley JW (2014) A review of the nutritional value of legumes and their effects on obesity and its related co-morbidities. Obes Rev 15(5):392–407. https://doi.org/10.1111/obr.12144

    Article  CAS  PubMed  Google Scholar 

  2. Tanaka M, Honda Y, Miwa S, Akahori R, Matsumoto K (2019) Comparison of the effects of roasted and boiled red kidney beans (Phaseolus vulgaris L.) on glucose/lipid metabolism and intestinal immunity in a high-fat diet-induced murine obesity model. J Food Sci 84(5):1180–1187. https://doi.org/10.1111/1750-3841.14583

    Article  CAS  PubMed  Google Scholar 

  3. Zhu Y-S, Shuai S, FitzGerald R (2018) Mung bean proteins and peptides: nutritional, functional and bioactive properties. Food Nutr Res. https://doi.org/10.29219/fnr.v62.1290(62 (0))

    Article  PubMed  PubMed Central  Google Scholar 

  4. Hou D, Yousaf L, Xue Y, Hu J, Wu J, Hu X, Feng N, Shen Q (2019) Mung bean (Vigna radiata L.): bioactive polyphenols, polysaccharides, peptides, and health benefits. Nutrients 11(6):1238. https://doi.org/10.3390/nu11061238

    Article  CAS  PubMed Central  Google Scholar 

  5. Hou D, Zhao Q, Yousaf L, Xue Y, Shen Q (2020) Whole mung bean (Vigna radiata L.) supplementation prevents high-fat diet-induced obesity and disorders in a lipid profile and modulates gut microbiota in mice. Eur J Nutr. https://doi.org/10.1007/s00394-020-02196-2

    Article  PubMed  Google Scholar 

  6. Liyanage R, Kiramage C, Visvanathan R, Jayathilake C, Weththasinghe P, Bangamuwage R, Chaminda Jayawardana B, Vidanarachchi J (2018) Hypolipidemic and hypoglycemic potential of raw, boiled, and sprouted mung beans (Vigna radiata L. Wilczek) in rats. J Food Biochem 42(1):e12457. https://doi.org/10.1111/jfbc.12457

    Article  CAS  Google Scholar 

  7. Luo J, Cai W, Wu T, Xu B (2016) Phytochemical distribution in hull and cotyledon of adzuki bean (Vigna angularis L.) and mung bean (Vigna radiate L.), and their contribution to antioxidant, anti-inflammatory and anti-diabetic activities. Food Chem 201:350–360. https://doi.org/10.1016/j.foodchem.2016.01.101

    Article  CAS  PubMed  Google Scholar 

  8. Inhae K, Seojin C, Joung HT, Munji C, Hae-Ri W, Won LB, Myoungsook L (2015) Effects of mung bean (Vigna radiata L.) ethanol extracts decrease proinflammatory cytokine-induced lipogenesis in the KK-Ay diabese mouse model. J Med Food 18(8):841–849. https://doi.org/10.1089/jmf.2014.3364

    Article  CAS  Google Scholar 

  9. Jang Y-H, Kang M-J, Choe E-O, Shin M, Kim J-I (2014) Mung bean coat ameliorates hyperglycemia and the antioxidant status in type 2 diabetic db/db mice. Food Sci Biotechnol 23(1):247–252. https://doi.org/10.1007/s10068-014-0034-3

    Article  CAS  Google Scholar 

  10. Kasprzak M, Rzedzicki Z (2010) Effect of pea seed coat admixture on physical properties and chemical composition of bread. Int Agrophys 24(2):149–156. https://doi.org/10.1016/j.indcrop.2009.09.012

    Article  CAS  Google Scholar 

  11. Zhong L, Fang Z, Wahlqvist ML, Wu G, Hodgson JM, Johnson SK (2018) Seed coats of pulses as a food ingredient: characterization, processing, and applications. Trends Food Sci Tech 80:35–42. https://doi.org/10.1016/j.tifs.2018.07.021

    Article  CAS  Google Scholar 

  12. Nicholson JK, Holmes E, Kinross J, Burcelin R, Gibson G, Jia W, Pettersson S (2012) Host-gut microbiota metabolic interactions. Science 336(6086):1262. https://doi.org/10.1126/science.1223813

    Article  CAS  PubMed  Google Scholar 

  13. Ley RE, Turnbaugh PJ, Klein S, Gordon JI (2006) Human gut microbes associated with obesity. Nature 444(7122):1022–1023. https://doi.org/10.1038/4441022a

    Article  CAS  PubMed  Google Scholar 

  14. Ridaura VK, Faith JJ, Rey FE, Cheng J, Duncan AE, Kau AL, Griffin NW, Lombard V, Henrissat B, Bain JR, Muehlbauer MJ, Ilkayeva O, Semenkovich CF, Funai K, Hayashi DK, Lyle BJ, Martini MC, Ursell LK, Clemente JC, Van Treuren W, Walters WA, Knight R, Newgard CB, Heath AC, Gordon JI (2013) Gut Microbiota from twins discordant for obesity modulate metabolism in mice. Science 341(6150):1241214. https://doi.org/10.1126/science.1241214

    Article  CAS  PubMed  Google Scholar 

  15. Rowland I, Gibson G, Heinken A, Scott K, Swann J, Thiele I, Tuohy K (2018) Gut microbiota functions: metabolism of nutrients and other food components. Eur J Nutr 57(1):1–24. https://doi.org/10.1007/s00394-017-1445-8

    Article  CAS  PubMed  Google Scholar 

  16. Bianchi F, Duque ALRF, Saad SMI, Sivieri K (2019) Gut microbiome approaches to treat obesity in humans. Appl Microbiol Biotechnol 103(3):1081–1094. https://doi.org/10.1007/s00253-018-9570-8

    Article  CAS  PubMed  Google Scholar 

  17. Gan R-Y, Deng Z-Q, Yan A-X, Shah NP, Lui W-Y, Chan C-L, Corke H (2016) Pigmented edible bean coats as natural sources of polyphenols with antioxidant and antibacterial effects. LWT-Food Sci Technol 73:168–177. https://doi.org/10.1016/j.lwt.2016.06.012

    Article  CAS  Google Scholar 

  18. AACC (2000) Approved methods of the American association of cereal chemists. Methods 08–01(ash), 30–10(fat), 46–08 (protein), 32–05(total fiber) (10th ed.). St. Paul, Minnesota: American association of cereal chemists

  19. Xu BJ, Chang SKC (2007) A comparative study on phenolic profiles and antioxidant activities of legumes as affected by extraction solvents. J Food Sci 72(2):S159–S166. https://doi.org/10.1111/j.1750-3841.2006.00260.x

    Article  CAS  PubMed  Google Scholar 

  20. Katsuki A, Sumida Y, Gabazza EC, Murashima S, Furuta M, Araki-Sasaki R, Hori Y, Yano Y, Adachi Y (2001) Homeostasis model assessment is a reliable indicator of insulin resistance during follow-up of patients with type 2 diabetes. Diabetes Care 24(2):362–365. https://doi.org/10.2337/diacare.24.2.362

    Article  CAS  PubMed  Google Scholar 

  21. Anhê FF, Roy D, Pilon G, Dudonné S, Matamoros S, Varin TV, Garofalo C, Moine Q, Desjardins Y, Levy E, Marette A (2015) A polyphenol-rich cranberry extract protects from diet-induced obesity, insulin resistance and intestinal inflammation in association with increased Akkermansia spp. population in the gut microbiota of mice. Gut 64(6):872–883. https://doi.org/10.1136/gutjnl-2014-307142

    Article  CAS  PubMed  Google Scholar 

  22. Hou D, Zhao Q, Yousaf L, Chen B, Xue Y, Shen Q (2020) A comparison between whole mung bean and decorticated mung bean: beneficial effects on the regulation of serum glucose and lipid disorders and the gut microbiota in high-fat diet and streptozotocin-induced prediabetic mice. Food Funct 11(6):5525–5537. https://doi.org/10.1039/D0FO00379D

    Article  CAS  PubMed  Google Scholar 

  23. Zhang L, Shi M, Ji J, Hu X, Chen F (2019) Gut microbiota determines the prevention effects of Luffa cylindrica (L.) Roem supplementation against obesity and associated metabolic disorders induced by high-fat diet. FASEB J 33(9):10339–10352. https://doi.org/10.1096/fj.201900488R

    Article  CAS  PubMed  Google Scholar 

  24. Wolf G (1996) High-fat, high-cholesterol diet raises plasma HDL cholesterol: studies on the mechanism of this effect. Nutr Rev 54(1):34–35. https://doi.org/10.1111/j.1753-4884887.1996.tb03772.x

    Article  CAS  PubMed  Google Scholar 

  25. Yao Y, Chen F, Wang M, Wang J, Ren G (2008) Antidiabetic activity of mung bean extracts in diabetic KK-Ay mice. J Agr Food Chem 56(19):8869–8873. https://doi.org/10.1021/jf8009238

    Article  CAS  Google Scholar 

  26. Kohno M, Motoyama T, Shigihara Y, Sakamoto M, Sugano H (2017) Improvement of glucose metabolism via mung bean protein consumption: a clinical trial of GLUCODIA TM isolated mung bean protein in Japan. Funct Foods Health Dis 7:115–134. https://doi.org/10.31989/ffhd.v7i2.320

    Article  CAS  Google Scholar 

  27. Watanabe H, Inaba Y, Inoue H, Kimura K, Kaneko S, Asahara S-i, Kido Y, Matsumoto M, Kohno M, Tachibana N, Motoyama T (2016) Dietary mung bean protein reduces hepatic steatosis, fibrosis, and inflammation in male mice with diet-induced. Nonalcoholic Fatty Liver Dis J Nutr 147(1):52–60. https://doi.org/10.3945/jn.116.231662

    Article  CAS  Google Scholar 

  28. Hashemi Z, Yang K, Yang H, Jin A, Ozga J, Chan CB (2014) Cooking enhances beneficial effects of pea seed coat consumption on glucose tolerance, incretin, and pancreatic hormones in high-fat-diet–fed rats. Appl Physiol Nutr Me 40(4):323–333. https://doi.org/10.1139/apnm-2014-0380

    Article  CAS  Google Scholar 

  29. Chan CB, Gupta J, Kozicky L, Hashemi Z, Yang K (2014) Improved glucose tolerance in insulin-resistant rats after pea hull feeding is associated with changes in lipid metabolism-targeted transcriptome. Appl Physiol Nutr Me 39(10):1112–1119. https://doi.org/10.1139/apnm-2014-0054

    Article  CAS  Google Scholar 

  30. Hashemi Z, Fouhse J, Im HS, Chan CB, Willing BP (2017) Dietary pea fiber supplementation improves glycemia and induces changes in the composition of gut microbiota, serum short chain fatty acid profile and expression of mucins in glucose intolerant rats. Nutrients 9(11):1236. https://doi.org/10.3390/nu9111236

    Article  CAS  PubMed Central  Google Scholar 

  31. Saltiel AR, Olefsky JM (2017) Inflammatory mechanisms linking obesity and metabolic disease. J Clin Invest 127(1):1–4. https://doi.org/10.1172/JCI92035

    Article  PubMed  PubMed Central  Google Scholar 

  32. Cani PD, Bibiloni R, Knauf C, Waget A, Neyrinck AM, Delzenne NM, Burcelin R (2008) Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes 57(6):1470–1481. https://doi.org/10.2337/db07-1403

    Article  CAS  PubMed  Google Scholar 

  33. Moreira APB, Texeira TFS, Ferreira AB, do Carmo Gouveia Peluzio M, de Cássia Gonçalves Alfenas R (2012) Influence of a high-fat diet on gut microbiota, intestinal permeability and metabolic endotoxaemia. Brit J Nutr 108(5):801–809. https://doi.org/10.1017/S0007114512001213

    Article  CAS  PubMed  Google Scholar 

  34. Fuke N, Nagata N, Suganuma H, Ota T (2019) Regulation of gut microbiota and metabolic endotoxemia with dietary factors. Nutrients 11(10):2277. https://doi.org/10.3390/nu11102277

    Article  CAS  PubMed Central  Google Scholar 

  35. Wang J, Wang P, Li D, Hu X, Chen F (2020) Beneficial effects of ginger on prevention of obesity through modulation of gut microbiota in mice. Eur J Nutr 59(2):699–718. https://doi.org/10.1007/s00394-019-01938-1

    Article  CAS  PubMed  Google Scholar 

  36. Li T, Gao J, Du M, Mao X (2019) Bovine α-lactalbumin hydrolysates ameliorate obesity-associated endotoxemia and inflammation in high-fat diet-fed mice through modulation of gut microbiota. Food Funct 10(6):3368–3378. https://doi.org/10.1039/C8FO01967C

    Article  CAS  PubMed  Google Scholar 

  37. Suzuki T, Hara H (2011) Role of flavonoids in intestinal tight junction regulation. J Nutr Biochem 22(5):401–408. https://doi.org/10.1016/j.jnutbio.2010.08.001

    Article  CAS  PubMed  Google Scholar 

  38. Sae-tan S, Kumrungsee T, Yanaka N (2020) Mungbean seed coat water extract inhibits inflammation in LPS-induced acute liver injury mice and LPS-stimulated RAW 246.7 macrophages via the inhibition of TAK1/IκBα/NF-κB. J Food Sci Technol 57(7):2659–2668. https://doi.org/10.1007/s13197-020-04302-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhu S, Li W, Li J, Jundoria A, Sama AE, Wang H (2012) It is not just folklore: the aqueous extract of mung bean coat is protective against sepsis. BMC Complem Altern M 2012:498467. https://doi.org/10.1155/2012/498467

    Article  Google Scholar 

  40. Amabebe E, Robert FO, Agbalalah T, Orubu ESF (2020) Microbial dysbiosis-induced obesity: role of gut microbiota in homoeostasis of energy metabolism. Brit J Nutr 123(10):1127–1137. https://doi.org/10.1017/S0007114520000380

    Article  CAS  PubMed  Google Scholar 

  41. Laparra JM, Sanz Y (2010) Interactions of gut microbiota with functional food components and nutraceuticals. Pharmacolo Res 61(3):219–225. https://doi.org/10.1016/j.phrs.2009.11.001

    Article  CAS  Google Scholar 

  42. Hou D, Zhao Q, Yousaf L, Khan J, Xue Y, Shen Q (2020) Consumption of mung bean (Vigna radiata L.) attenuates obesity, ameliorates lipid metabolic disorders and modifies the gut microbiota composition in mice fed a high-fat diet. J Funct Foods 64:103687. https://doi.org/10.1016/j.jff.2019.103687

    Article  Google Scholar 

  43. Nakatani A, Li X, Miyamoto J, Igarashi M, Watanabe H, Sutou A, Watanabe K, Motoyama T, Tachibana N, Kohno M, Inoue H, Kimura I (2018) Dietary mung bean protein reduces high-fat diet-induced weight gain by modulating host bile acid metabolism in a gut microbiota-dependent manner. Biochem Bioph Res Co 501(4):955–961. https://doi.org/10.1016/j.bbrc.2018.05.090

    Article  CAS  Google Scholar 

  44. Makki K, Deehan EC, Walter J, Bäckhed F (2018) The impact of dietary fiber on gut microbiota in host health and disease. Cell Host Microbe 23(6):705–715. https://doi.org/10.1016/j.chom.2018.05.012

    Article  CAS  PubMed  Google Scholar 

  45. Awika JM, Rose DJ, Simsek S (2018) Complementary effects of cereal and pulse polyphenols and dietary fiber on chronic inflammation and gut health. Food Funct 9(3):1389–1409. https://doi.org/10.1039/C7FO02011B

    Article  CAS  PubMed  Google Scholar 

  46. Kilua A, Chihiro H, Han K-H, Homma K, Fukuma N, Kamitani T, Suzuki T, Fukushima M (2020) Whole kidney bean (Phaseolus vulgaris) and bean hull reduce the total serum cholesterol, modulate the gut microbiota and affect the caecal fermentation in rats. Bioact Carbohyd Dietary Fibre 24:100232. https://doi.org/10.1016/j.bcdf.2020.100232

    Article  CAS  Google Scholar 

  47. Myint H, Kishi H, Iwahashi Y, Saburi W, Koike S, Kobayashi Y (2018) Functional modulation of caecal fermentation and microbiota in rat by feeding bean husk as a dietary fibre supplement. Benef Mirbobes 9(6):963–974. https://doi.org/10.3920/bm2017.0174

    Article  CAS  Google Scholar 

  48. Yang L, Zhao Y, Huang J, Zhang H, Lin Q, Han L, Liu J, Wang J, Liu H (2020) Insoluble dietary fiber from soy hulls regulates the gut microbiota in vitro and increases the abundance of bifidobacteriales and lactobacillales. J Food Sci Technol 57(1):152–162. https://doi.org/10.1007/s13197-019-04041-9

    Article  CAS  PubMed  Google Scholar 

  49. Yang L, Lin Q, Han L, Wang Z, Luo M, Kang W, Liu J, Wang J, Ma T, Liu H (2020) Soy hull dietary fiber alleviates inflammation in BALB/C mice by modulating the gut microbiota and suppressing the TLR-4/NF-κB signaling pathway. Food Funct 11(7):5965–5975. https://doi.org/10.1039/D0FO01102A

    Article  CAS  PubMed  Google Scholar 

  50. Canfora EE, Meex RCR, Venema K, Blaak EE (2019) Gut microbial metabolites in obesity, NAFLD and T2DM. Nat Rev Endocrinol 15(5):261–273. https://doi.org/10.1038/s41574-019-0156-z

    Article  CAS  PubMed  Google Scholar 

  51. Zhao L (2013) The gut microbiota and obesity: from correlation to causality. Nat Rev Microbiol 11:639. https://doi.org/10.1038/nrmicro3089

    Article  CAS  PubMed  Google Scholar 

  52. Daniel H, Gholami AM, Berry D, Desmarchelier C, Hahne H, Loh G, Mondot S, Lepage P, Rothballer M, Walker A, Böhm C, Wenning M, Wagner M, Blaut M, Schmitt-Kopplin P, Kuster B, Haller D, Clavel T (2014) High-fat diet alters gut microbiota physiology in mice. ISME J 8(2):295–308. https://doi.org/10.1038/ismej.2013.155

    Article  CAS  PubMed  Google Scholar 

  53. Clemente Jose C, Ursell Luke K, Parfrey Laura W, Knight R (2012) The impact of the gut microbiota on human health: an integrative view. Cell 148(6):1258–1270. https://doi.org/10.1016/j.cell.2012.01.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Coelho OGL, Cândido FG, Alfenas RdCG (2019) Dietary fat and gut microbiota: mechanisms involved in obesity control. Crit Rev Food Sci 59(19):3045–3053. https://doi.org/10.1080/10408398.2018.1481821

    Article  CAS  Google Scholar 

  55. De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JB, Massart S, Collini S, Pieraccini G, Lionetti P (2010) Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. P Natl Sci 107(33):14691–14696. https://doi.org/10.1073/pnas.1005963107

    Article  Google Scholar 

  56. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444(7122):1027–1031. https://doi.org/10.1038/nature05414

    Article  PubMed  Google Scholar 

  57. Araújo JR, Tomas J, Brenner C, Sansonetti PJ (2017) Impact of high-fat diet on the intestinal microbiota and small intestinal physiology before and after the onset of obesity. Biochimie 141:97–106. https://doi.org/10.1016/j.biochi.2017.05.019

    Article  CAS  PubMed  Google Scholar 

  58. Hildebrandt MA, Hoffmann C, Sherrill-Mix SA, Keilbaugh SA, Hamady M, Chen YY, Knight R, Ahima RS, Bushman F, Wu GD (2009) High-fat diet determines the composition of the murine gut microbiome independently of obesity. Gastroenterology 137(5):1716–1724.e1712. https://doi.org/10.1053/j.gastro.2009.08.042

    Article  CAS  PubMed  Google Scholar 

  59. Belzer C, de Vos WM (2012) Microbes inside—from diversity to function: the case of Akkermansia. ISME J 6(8):1449–1458. https://doi.org/10.1038/ismej.2012.6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Shin N-R, Lee J-C, Lee H-Y, Kim M-S, Whon TW, Lee M-S, Bae J-W (2014) An increase in the Akkermansia spp. population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice. Gut 63(5):727–735. https://doi.org/10.1136/gutjnl-2012-303839

    Article  CAS  PubMed  Google Scholar 

  61. Everard A, Belzer C, Geurts L, Ouwerkerk JP, Druart C, Bindels LB, Guiot Y, Derrien M, Muccioli GG, Delzenne NM, de Vos WM, Cani PD (2013) Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. P Natl Sci 110(22):9066–9071. https://doi.org/10.1073/pnas.1219451110

    Article  Google Scholar 

  62. Zhang Z, Wu XY, Cao SY, Cromie M, Shen YH, Feng YM, Yang H, Li L (2017) Chlorogenic acid ameliorates experimental colitis by promoting growth of Akkermansia in mice. Nutrients 9(7):13. https://doi.org/10.3390/nu9070677

    Article  CAS  Google Scholar 

  63. Zhang Z, Wu XY, Cao SY, Wang L, Wang D, Yang H, Feng YM, Wang SL, Li L (2016) Caffeic acid ameliorates colitis in association with increased Akkermansia population in the gut microbiota of mice. Oncotarget 7(22):31790–31799

    Article  PubMed  PubMed Central  Google Scholar 

  64. Fang Q, Hu J, Nie Q, Nie S (2019) Effects of polysaccharides on glycometabolism based on gut microbiota alteration. Trends Food Sci Tech 92:65–70. https://doi.org/10.1016/j.tifs.2019.08.015

    Article  CAS  Google Scholar 

  65. Lai F, Wen Q, Li L, Wu H, Li X (2010) Antioxidant activities of water-soluble polysaccharide extracted from mung bean (Vigna radiata L.) hull with ultrasonic assisted treatment. Carbohyd Polym 81(2):323–329. https://doi.org/10.1016/j.carbpol.2010.02.011

    Article  CAS  Google Scholar 

  66. Sharma V, Smolin J, Nayak J, Ayala JE, Scott DA, Peterson SN, Freeze HH (2018) Mannose alters gut microbiome, prevents diet-induced obesity, and improves host metabolism. Cell Rep 24(12):3087–3098. https://doi.org/10.1016/j.celrep.2018.08.064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Sánchez B, Delgado S, Blanco-Míguez A, Lourenço A, Gueimonde M, Margolles A (2017) Probiotics, gut microbiota, and their influence on host health and disease. Mol Nutr Food Res 61(1):1600240. https://doi.org/10.1002/mnfr.201600240

    Article  CAS  Google Scholar 

  68. Wan MLY, Ling KH, El-Nezami H, Wang MF (2019) Influence of functional food components on gut health. Crit Rev Food Sci 59(12):1927–1936. https://doi.org/10.1080/10408398.2018.1433629

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (2017YFD0401202).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qun Shen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 7066 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, D., Zhao, Q., Yousaf, L. et al. Beneficial effects of mung bean seed coat on the prevention of high-fat diet-induced obesity and the modulation of gut microbiota in mice. Eur J Nutr 60, 2029–2045 (2021). https://doi.org/10.1007/s00394-020-02395-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-020-02395-x

Keywords

Navigation