Skip to main content
Log in

The anserine to carnosine ratio: an excellent discriminator between white and red meats consumed by free-living overweight participants of the PREVIEW study

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Background

Biomarkers of meat intake hold promise in clarifying the health effects of meat consumption, yet the differentiation between red and white meat remains a challenge. We measure meat intake objectively in a free-living population by applying a newly developed, three-step strategy for biomarker-based assessment of dietary intakes aimed to indicate if (1) any meat was consumed, (2) what type it was and (3) the quantity consumed.

Methods

Twenty-four hour urine samples collected in a four-way crossover RCT and in a cross-sectional analysis of a longitudinal lifestyle intervention (the PREVIEW Study) were analyzed by untargeted LC–MS metabolomics. In the RCT, healthy volunteers consumed three test meals (beef, pork and chicken) and a control; in PREVIEW, overweight participants followed a diet with high or moderate protein levels. PLS-DA modeling of all possible combinations between six previously reported, partially validated, meat biomarkers was used to classify meat intake using samples from the RCT to predict consumption in PREVIEW.

Results

Anserine best separated omnivores from vegetarians (AUROC 0.94–0.97), while the anserine to carnosine ratio best distinguished the consumption of red from white meat (AUROC 0.94). Carnosine showed a trend for dose–response between non-consumers, low consumers and high consumers for all meat categories, while in combination with other biomarkers the difference was significant.

Conclusion

It is possible to evaluate red meat intake by using combinations of existing biomarkers of white and general meat intake. Our results are novel and can be applied to assess qualitatively recent meat intake in nutritional studies. Further work to improve quantitation by biomarkers is needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

24 h:

Twenty-four hours

3-MH:

3(π)-Methylhistidine

AUROC:

Area under the receiver operating characteristics curve

BFI:

Biomarker of food intake

BMI:

Body mass index

CV:

Cross-validation

ER:

Misclassification error rate

GI:

Glycemic index

LC–MS:

Liquid chromatography–mass spectrometry

m/z :

Mass to charge ratio

MeHI-Ala:

N-(1-Methyl-4-hydroxy-3-imidazolin-2,2-ylidene)alanine

PLS-DA:

Partial least square discriminant analysis

PREVIEW:

Prevention of Diabetes through Lifestyle Intervention and Population Studies in Europe and around the World

Pro-Hyp:

Prolyl-hydroxyproline

Ratio:

Anserine to carnosine ratio

RCT:

Randomized controlled trial

ROC:

Receiver operating characteristics curve

RT:

Retention time

Std:

Standard deviation

TMAO:

Trimethylamine N-oxide

References

  1. Brouwer-Brolsma EM, Brennan L, Drevon CA, van Kranen H, Manach C, Dragsted LO, Roche HM, Andres-Lacueva C, Bakker SJL, Bouwman J, Capozzi F, De Saeger S, Gundersen TE, Kolehmainen M, Kulling SE, Landberg R, Linseisen J, Mattivi F, Mensink RP, Scaccini C, Skurk T, Tetens I, Vergeres G, Wishart DS, Scalbert A, Feskens EJM (2017) Combining traditional dietary assessment methods with novel metabolomics techniques: present efforts by the Food Biomarker Alliance. Proc Nutr Soc 76(4):619–627. https://doi.org/10.1017/s0029665117003949

    Article  PubMed  Google Scholar 

  2. Brennan L, Hu FB (2019) Metabolomics-Based Dietary Biomarkers in Nutritional Epidemiology-Current Status and Future Opportunities. Mol Nutr Food Res 63(1):e1701064. https://doi.org/10.1002/mnfr.201701064

    Article  CAS  PubMed  Google Scholar 

  3. Dragsted LO, Gao Q, Scalbert A, Vergères G, Kolehmainen M, Manach C, Brennan L, Afman LA, Wishart DS, Andres Lacueva C, Garcia-Aloy M, Verhagen H, Feskens EJM, Praticò G (2018) Validation of biomarkers of food intake-critical assessment of candidate biomarkers. Genes Nutr 13:14–14. https://doi.org/10.1186/s12263-018-0603-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cheung W, Keski-Rahkonen P, Assi N, Ferrari P, Freisling H, Rinaldi S, Slimani N, Zamora-Ros R, Rundle M, Frost G, Gibbons H, Carr E, Brennan L, Cross AJ, Pala V, Panico S, Sacerdote C, Palli D, Tumino R, Kuhn T, Kaaks R, Boeing H, Floegel A, Mancini F, Boutron-Ruault MC, Baglietto L, Trichopoulou A, Naska A, Orfanos P, Scalbert A (2017) A metabolomic study of biomarkers of meat and fish intake. Am J Clin Nutr 105(3):600–608. https://doi.org/10.3945/ajcn.116.146639

    Article  CAS  PubMed  Google Scholar 

  5. Abe H, Okuma E, Sekine H, Maeda A, Yoshiue S (1993) Human urinary excretion of L-histidine-related compounds after ingestion of several meats and fish muscle. Int J Biochem 25(9):1245–1249. https://doi.org/10.1016/0020-711x(93)90074-o

    Article  CAS  PubMed  Google Scholar 

  6. Lloyd AJ, Beckmann M, Haldar S, Seal C, Brandt K, Draper J (2013) Data-driven strategy for the discovery of potential urinary biomarkers of habitual dietary exposure. Am J Clin Nutr 97(2):377–389. https://doi.org/10.3945/ajcn.112.048033

    Article  CAS  PubMed  Google Scholar 

  7. Cross AJ, Major JM, Sinha R (2011) Urinary biomarkers of meat consumption. Cancer Epidemiol Biomark Prev 20(6):1107–1111. https://doi.org/10.1158/1055-9965.EPI-11-0048

    Article  CAS  Google Scholar 

  8. Stella C, Beckwith-Hall B, Cloarec O, Holmes E, Lindon JC, Powell J, van der Ouderaa F, Bingham S, Cross AJ, Nicholson JK (2006) Susceptibility of human metabolic phenotypes to dietary modulation. J Proteome Res 5(10):2780–2788. https://doi.org/10.1021/pr060265y

    Article  CAS  PubMed  Google Scholar 

  9. Bertram HC, Hoppe C, Petersen BO, Duus JO, Molgaard C, Michaelsen KF (2007) An NMR-based metabolomic investigation on effects of milk and meat protein diets given to 8-year-old boys. Br J Nutr 97(4):758–763. https://doi.org/10.1017/s0007114507450322

    Article  CAS  PubMed  Google Scholar 

  10. Andersen MBS, Reinbach HC, Rinnan A, Barri T, Mithril C, Dragsted LO (2013) Discovery of exposure markers in urine for Brassica-containing meals served with different protein sources by UPLC-qTOF-MS untargeted metabolomics. Metabolomics 9(5):984–997. https://doi.org/10.1007/s11306-013-0522-0

    Article  CAS  Google Scholar 

  11. Yeum KJ, Orioli M, Regazzoni L, Carini M, Rasmussen H, Russell RM, Aldini G (2010) Profiling histidine dipeptides in plasma and urine after ingesting beef, chicken or chicken broth in humans. Amino Acids 38(3):847–858. https://doi.org/10.1007/s00726-009-0291-2

    Article  CAS  PubMed  Google Scholar 

  12. Block WD, Hubbard RW, Steele BF (1965) Excretion of histidine and histidine derivatives by human subjects ingesting protein from different sources. J Nutr 85(4):419–425. https://doi.org/10.1093/jn/85.4.419

    Article  CAS  PubMed  Google Scholar 

  13. Peiretti PG, Medana C, Visentin S, Giancotti V, Zunino V, Meineri G (2011) Determination of carnosine, anserine, homocarnosine, pentosidine and thiobarbituric acid reactive substances contents in meat from different animal species. Food Chem 126(4):1939–1947. https://doi.org/10.1016/j.foodchem.2010.12.036

    Article  CAS  PubMed  Google Scholar 

  14. Boldyrev AA, Severin SE (1990) The histidine-containing dipeptides, carnosine and anserine: distribution, properties and biological significance. Adv Enzyme Regul 30:175–194. https://doi.org/10.1016/0065-2571(90)90017-V

    Article  CAS  PubMed  Google Scholar 

  15. Gil-Agustí M, Esteve-Romero J, Carda-Broch S (2008) Anserine and carnosine determination in meat samples by pure micellar liquid chromatography. J Chromatogr A 1189(1):444–450. https://doi.org/10.1016/j.chroma.2007.11.075

    Article  CAS  PubMed  Google Scholar 

  16. Brosnan ME, Brosnan JT (2016) The role of dietary creatine. Amino Acids 48(8):1785–1791. https://doi.org/10.1007/s00726-016-2188-1

    Article  CAS  PubMed  Google Scholar 

  17. Cuparencu C, Rinnan A, Dragsted LO (2019) Combined markers to assess meat intake—human metabolomic studies of discovery and validation. Mol Nutr Food Res 63(17):e1900106. https://doi.org/10.1002/mnfr.201900106

    Article  CAS  PubMed  Google Scholar 

  18. Ohara H, Matsumoto H, Ito K, Iwai K, Sato K (2007) Comparison of quantity and structures of hydroxyproline-containing peptides in human blood after oral ingestion of gelatin hydrolysates from different sources. J Agric Food Chem 55(4):1532–1535. https://doi.org/10.1021/jf062834s

    Article  CAS  PubMed  Google Scholar 

  19. Acar E, Gurdeniz G, Khakimov B, Savorani F, Korndal SK, Larsen TM, Engelsen SB, Astrup A, Dragsted LO (2019) Biomarkers of Individual foods, and separation of diets using untargeted LC–MS-based plasma metabolomics in a randomized controlled trial. Mol Nutr Food Res 63(1):e1800215. https://doi.org/10.1002/mnfr.201800215

    Article  CAS  PubMed  Google Scholar 

  20. Yin X, Gibbons H, Rundle M, Frost G, McNulty BA, Nugent AP, Walton J, Flynn A, Gibney MJ, Brennan L (2017) Estimation of chicken intake by adults using metabolomics-derived markers. J Nutr. https://doi.org/10.3945/jn.117.252197

    Article  PubMed  Google Scholar 

  21. Fogelholm M, Larsen TM, Westerterp-Plantenga M, Macdonald I, Martinez JA, Boyadjieva N, Poppitt S, Schlicht W, Stratton G, Sundvall J, Lam T, Jalo E, Christensen P, Drummen M, Simpson E, Navas-Carretero S, Handjieva-Darlenska T, Muirhead R, Silvestre MP, Kahlert D, Pastor-Sanz L, Brand-Miller J, Raben A (2017) PREVIEW: Prevention of diabetes through lifestyle intervention and population studies in Europe and around the world. Design, methods, and baseline participant description of an adult cohort enrolled into a three-year randomised clinical trial. Nutrients. https://doi.org/10.3390/nu9060632

    Article  PubMed  PubMed Central  Google Scholar 

  22. Pluskal T, Castillo S, Villar-Briones A, Oresic M (2010) MZmine 2: modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinform 11:395. https://doi.org/10.1186/1471-2105-11-395

    Article  CAS  Google Scholar 

  23. Gurdeniz G, Jensen MG, Meier S, Bech L, Lund E, Dragsted LO (2016) Detecting beer intake by unique metabolite patterns. J Proteome Res 15(12):4544–4556. https://doi.org/10.1021/acs.jproteome.6b00635

    Article  CAS  PubMed  Google Scholar 

  24. Xia J, Broadhurst DI, Wilson M, Wishart DS (2013) Translational biomarker discovery in clinical metabolomics: an introductory tutorial. Metabolomics 9(2):280–299. https://doi.org/10.1007/s11306-012-0482-9

    Article  CAS  PubMed  Google Scholar 

  25. Sri Harsha PSC, Wahab RA, Garcia-Aloy M, Madrid-Gambin F, Estruel-Amades S, Watzl B, Andrés-Lacueva C, Brennan L (2018) Biomarkers of legume intake in human intervention and observational studies: a systematic review. Genes Nutr 13(1):25. https://doi.org/10.1186/s12263-018-0614-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kaneko J, Enya A, Enomoto K, Ding Q, Hisatsune T (2017) Anserine (beta-alanyl-3-methyl-L-histidine) improves neurovascular-unit dysfunction and spatial memory in aged AβPPswe/PSEN1dE9 Alzheimer’s-model mice. Sci Rep 7(1):12571. https://doi.org/10.1038/s41598-017-12785-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Everaert I, Taes Y, De Heer E, Baelde H, Zutinic A, Yard B, Sauerhofer S, Vanhee L, Delanghe J, Aldini G, Derave W (2012) Low plasma carnosinase activity promotes carnosinemia after carnosine ingestion in humans. Am J Physiol Renal Physiol 302(12):F1537–1544. https://doi.org/10.1152/ajprenal.00084.2012

    Article  CAS  PubMed  Google Scholar 

  28. Juniper D, Rymer C (2018) The effect of rearing system and cooking method on the carnosine and anserine content of poultry and game meat. J Food Nutr Agric 1(1):35–39. https://doi.org/10.21839/jfna.2018.v1i1.216; Available at http://centaur.reading.ac.uk/79703/

  29. Brennan L (2018) Moving toward Objective Biomarkers of Dietary Intake. J Nutr 148(6):821–822. https://doi.org/10.1093/jn/nxy067

    Article  PubMed  Google Scholar 

  30. Mitry P, Wawro N, Rohrmann S, Giesbertz P, Daniel H, Linseisen J (2019) Plasma concentrations of anserine, carnosine and pi-methylhistidine as biomarkers of habitual meat consumption. Eur J Clin Nutr 73(5):692–702. https://doi.org/10.1038/s41430-018-0248-1

    Article  CAS  PubMed  Google Scholar 

  31. Walker JB (1979) Creatine: biosynthesis, regulation, and function. In: Advances in enzymology and related areas of molecular biology. pp 177–242. doi:10.1002/9780470122952.ch4

  32. Cho CE, Taesuwan S, Malysheva OV, Bender E, Tulchinsky NF, Yan J, Sutter JL, Caudill MA (2017) Trimethylamine-N-oxide (TMAO) response to animal source foods varies among healthy young men and is influenced by their gut microbiota composition: A randomized controlled trial. Mol Nutr Food Res. https://doi.org/10.1002/mnfr.201600324

    Article  PubMed  Google Scholar 

  33. Kruger R, Merz B, Rist MJ, Ferrario PG, Bub A, Kulling SE, Watzl B (2017) Associations of current diet with plasma and urine TMAO in the KarMeN study: direct and indirect contributions. Mol Nutr Food Res. https://doi.org/10.1002/mnfr.201700363

    Article  PubMed  Google Scholar 

  34. Mori A, Hikihara R, Ishimaru M, Hatate H, Tanaka R (2018) Evaluation of histidine-containing dipeptides in twelve marine organisms and four land animal meats by hydrophilic interaction liquid chromatography with ultraviolet detection. J Liq Chromatogr Relat Technol 41(13–14):849–854. https://doi.org/10.1080/10826076.2018.1526803

    Article  CAS  Google Scholar 

  35. European Food Safety A (2011) Use of the EFSA comprehensive European food consumption database in exposure assessment. EFSA J 9(3):2097. https://doi.org/10.2903/j.efsa.2011.2097

    Article  Google Scholar 

  36. Gibbons H, Michielsen CJR, Rundle M, Frost G, McNulty BA, Nugent AP, Walton J, Flynn A, Gibney MJ, Brennan L (2017) Demonstration of the utility of biomarkers for dietary intake assessment; proline betaine as an example. Mol Nutr Food Res. https://doi.org/10.1002/mnfr.201700037

    Article  PubMed  Google Scholar 

  37. Han Y, Gao B, Zhao S, Wang M, Jian L, Han L, Liu X (2019) Simultaneous detection of carnosine and anserine by UHPLC–MS/MS and its application on biomarker analysis for differentiation of meat and bone meal. Molecules 24(2):217. https://doi.org/10.3390/molecules24020217

    Article  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank Cecilie F. Appeldorff for her support with the LC–MS analyses, the kitchen staff at NEXS and all the study participants. This work was supported by the Joint-Programming Initiative "A healthy diet for a healthy life", through the Food Biomarker Alliance Project (www.foodmetabolome.org), supported by the Danish Innovation Foundation, and by the PREVIEW study, Prevention of Diabetes through Lifestyle Intervention and Population Studies in Europe and around the World, funded by the European Commission under the 7th Framework Programme (Grant agreement no 312057), the New Zealand Health Research Council (Grant no 14/191), and the University of Auckland Faculty Research Development Fund. CC and LOD designed the research of the crossover RCT study. ARA designed the research of the large multicenter intervention study, together with central PIs in PREVIEW, including SDP. MPS and SDP were responsible for data collection at the center in New Zealand. CC, ÅRI and LOD developed and implemented the concept. CC drafted the manuscript. All authors revised and accepted the final version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cătălina Cuparencu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest; however, SDP held the Fonterra Chair in Human Nutrition during the PREVIEW project.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 41 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cuparencu, C., Rinnan, Å., Silvestre, M.P. et al. The anserine to carnosine ratio: an excellent discriminator between white and red meats consumed by free-living overweight participants of the PREVIEW study. Eur J Nutr 60, 179–192 (2021). https://doi.org/10.1007/s00394-020-02230-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-020-02230-3

Keywords

Navigation