Skip to main content
Log in

The effect of hesperidin supplementation on metabolic profiles in patients with metabolic syndrome: a randomized, double-blind, placebo-controlled clinical trial

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

Hesperidin as an antioxidant flavonoid exerts anti-adipogenic, anti-inflammatory, anti-oxidant and anti-hypercholesterolemic effects. Besides, the increasing prevalence of metabolic syndrome (MetS) and its allied complications, on the one hand, and the willingness of individuals to use natural products for curing their diseases, on the other hand, led to the design of this study to evaluate the efficacy of hesperidin in normalizing the metabolic abnormalities in patients with MetS.

Methods

In this clinical trial with a parallel-group design, 49 patients with MetS received either 500-mg hesperidin or placebo, twice daily, for 12 weeks. Number of participants with treated MetS was considered as a primary end point. Anthropometric parameters, dietary intake, physical activity, lipid profile, glucose homeostasis parameter, tumor necrosis factor alpha (TNF-α), high-sensitivity C-reactive protein (hs-CRP) were assessed at the beginning and at the end of the study. This trial is registered at clinicaltrials.gov as NCT03734874.

Results

Compared with the placebo group, hesperidin decreased fasting glucose level (− 6.07 vs. − 13.32 mg/dL, P = 0.043), triglyceride (− 8.83 vs. − 49.09 mg/dL, P = 0.049), systolic blood pressure (− 0.58 vs. − 2.68 mmHg, P = 0.048) and TNF-α (− 1.29 vs. − 4.44 pg/mL, P = 0.009). Based on the within-group analysis, hesperidin led to significant decrease in serum levels of glucose, insulin, triglyceride, total cholesterol, low density lipoprotein cholesterol, TNF-α and hs-CRP, while in control group only glucose and insulin significantly decreased.

Conclusions

The results indicate that hesperidin supplementation can improve metabolic abnormalities and inflammatory status in patients with MetS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Cornier M-A, Dabelea D, Hernandez TL, Lindstrom RC, Steig AJ, Stob NR, Van Pelt RE, Wang H, Eckel RH (2008) The metabolic syndrome. Endocr Rev 29(7):777–822

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Ford ES (2005) Risks for all-cause mortality, cardiovascular disease, and diabetes associated with the metabolic syndrome: a summary of the evidence. Diabetes Care 28(7):1769–1778

    PubMed  Google Scholar 

  3. Kotronen A, Yki-Jarvinen H (2008) Fatty liver: a novel component of the metabolic syndrome. Arterioscler Thromb Vasc Biol 28(1):27–38

    CAS  PubMed  Google Scholar 

  4. Escobedo J, Schargrodsky H, Champagne B, Silva H, Boissonnet CP, Vinueza R, Torres M, Hernandez R, Wilson E (2009) Prevalence of the metabolic syndrome in Latin America and its association with sub-clinical carotid atherosclerosis: the CARMELA cross sectional study. Cardiovasc Diabetol 8(1):52

    PubMed  PubMed Central  Google Scholar 

  5. Cicero AFG, Fogacci F, Giovannini M, Grandi E, Rosticci M, D’Addato S, Borghi C (2018) Serum uric acid predicts incident metabolic syndrome in the elderly in an analysis of the Brisighella heart study. Sci Rep 8(1):11529

    PubMed  PubMed Central  Google Scholar 

  6. Hu G, Qiao Q, Tuomilehto J, Balkau B, Borch-Johnsen K, Pyorala K (2004) Prevalence of the metabolic syndrome and its relation to all-cause and cardiovascular mortality in nondiabetic European men and women. Arch Intern Med 164(10):1066–1076

    PubMed  Google Scholar 

  7. Bergman RN, Van Citters GW, Mittelman SD, Dea MK, Hamilton-Wessler M, Kim SP, Ellmerer M (2001) Central role of the adipocyte in the metabolic syndrome. J Investig Med 49(1):119–126

    CAS  PubMed  Google Scholar 

  8. Grundy SM, Becker D, Clark LT, Cooper RS, Denke MA, Howard J, Hunninghake DB, Illingworth DR, Luepker RV, McBride P (2002) Detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III). Circulation 106(25):3143–3421

    Google Scholar 

  9. National CEPN (2002) Third report of the national cholesterol education program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III) final report. Circulation 106(25):3143

    Google Scholar 

  10. Hanley AJ, Festa A, D’Agostino RB, Wagenknecht LE, Savage PJ, Tracy RP, Saad MF, Haffner SM (2004) Metabolic and inflammation variable clusters and prediction of type 2 diabetes: factor analysis using directly measured insulin sensitivity. Diabetes 53(7):1773–1781

    CAS  PubMed  Google Scholar 

  11. Carr DB, Utzschneider KM, Hull RL, Kodama K, Retzlaff BM, Brunzell JD, Shofer JB, Fish BE, Knopp RH, Kahn SE (2004) Intra-abdominal fat is a major determinant of the national cholesterol education program adult treatment panel III criteria for the metabolic syndrome. Diabetes 53(8):2087–2094

    CAS  PubMed  Google Scholar 

  12. Ferrannini E, Haffner S, Mitchell B, Stern M (1991) Hyperinsulinaemia: the key feature of a cardiovascular and metabolic syndrome. Diabetologia 34(6):416–422

    CAS  PubMed  Google Scholar 

  13. Jensen MD, Haymond MW, Rizza RA, Cryer PE, Miles J (1989) Influence of body fat distribution on free fatty acid metabolism in obesity. J Clin Investig 83(4):1168–1173

    CAS  PubMed  Google Scholar 

  14. Reaven G (2004) The metabolic syndrome or the insulin resistance syndrome? Different names, different concepts, and different goals. Endocrinol Metab Clin North Am 33(2):283–303

    PubMed  Google Scholar 

  15. Eckel RH, Grundy SM, Zimmet PZ (2005) The metabolic syndrome. The lancet 365(9468):1415–1428

    CAS  Google Scholar 

  16. Ehteshami M, Shakerhosseini R, Sedaghat F, Hedayati M, Eini-Zinab H, Hekmatdoost A (2018) The effect of gluten free diet on components of metabolic syndrome: a randomized clinical trial. Asian Pac J Cancer Prev 19(10):2979–2984. https://doi.org/10.22034/apjcp.2018.19.10.2979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Eslamparast T, Zamani F, Hekmatdoost A, Sharafkhah M, Eghtesad S, Malekzadeh R, Poustchi H (2014) Effects of synbiotic supplementation on insulin resistance in subjects with the metabolic syndrome: a randomised, double-blind, placebo-controlled pilot study. Br J Nutr 112(3):438–445. https://doi.org/10.1017/s0007114514000919

    Article  CAS  PubMed  Google Scholar 

  18. Ghorbani Z, Hekmatdoost A, Mirmiran P (2014) Anti-hyperglycemic and insulin sensitizer effects of turmeric and its principle constituent curcumin. Phytother Res 12(4):e18081. https://doi.org/10.5812/ijem.18081

    Article  Google Scholar 

  19. Hekmatdoost A, Mirmiran P, Hosseini-Esfahani F, Azizi F (2011) Dietary fatty acid composition and metabolic syndrome in Tehranian adults. Nutrition 27(10):1002–1007. https://doi.org/10.1016/j.nut.2010.11.004

    Article  CAS  PubMed  Google Scholar 

  20. Mirmiran P, Hekmatdoost A, Azizi F (2007) Metabolic syndrome is associated with adherence to an unhealthy diet. Diabetes Care 30(9):e93. https://doi.org/10.2337/dc06-1928

    Article  PubMed  Google Scholar 

  21. Yari Z, Rahimlou M, Poustchi H, Hekmatdoost A (2016) Flaxseed supplementation in metabolic syndrome management: a pilot randomized, open-labeled, controlled Study. Phytother Res 30(8):1339–1344. https://doi.org/10.1002/ptr.5635

    Article  CAS  PubMed  Google Scholar 

  22. Patti AM, Al-Rasadi K, Giglio RV, Nikolic D, Mannina C, Castellino G, Chianetta R, Banach M, Cicero AF, Lippi G (2018) Natural approaches in metabolic syndrome management. Arch Med Sci 14(2):422

    CAS  PubMed  Google Scholar 

  23. Cicero AFG, Colletti A, Fogacci F, Bove M, Rosticci M, Borghi C (2017) Effects of a combined nutraceutical on lipid pattern, glucose metabolism and inflammatory parameters in moderately hypercholesterolemic subjects: a double-blind, cross-over, randomized clinical trial. High Blood Press Cardiovasc Prev 24(1):13–18

    CAS  PubMed  Google Scholar 

  24. Amiot M, Riva C, Vinet A (2016) Effects of dietary polyphenols on metabolic syndrome features in humans: a systematic review. Obes Rev 17(7):573–586

    CAS  PubMed  Google Scholar 

  25. Cicero AF, Caliceti C, Fogacci F, Giovannini M, Calabria D, Colletti A, Veronesi M, Roda A, Borghi C (2017) Effect of apple polyphenols on vascular oxidative stress and endothelium function: a translational study. Mol Nutr Food Res 61(11):1700373

    Google Scholar 

  26. Giglio RV, Patti AM, Cicero AF, Lippi G, Rizzo M, Toth PP, Banach M (2018) Polyphenols: potential use in the prevention and treatment of cardiovascular diseases. Curr Pharm Des 24(2):239–258

    CAS  PubMed  Google Scholar 

  27. Manach C, Williamson G, Morand C, Scalbert A, Rémésy C (2005) Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. Am J Clin Nutr 81(1):230S–242S

    CAS  PubMed  Google Scholar 

  28. Haidari F, Heybar H, Jalali M, Ahmadi Engali K, Helli B, Shirbeigi E (2015) Hesperidin supplementation modulates inflammatory responses following myocardial infarction. J Am Coll Nutr 34(3):205–211

    CAS  PubMed  Google Scholar 

  29. Mosqueda-Solís A, Sánchez J, Reynés B, Palou M, Portillo MP, Palou A, Picó C (2018) Hesperidin and capsaicin, but not the combination, prevent hepatic steatosis and other metabolic syndrome-related alterations in western diet-fed rats. Sci Rep 8(1):15100

    PubMed  PubMed Central  Google Scholar 

  30. Homayouni F, Haidari F, Hedayati M, Zakerkish M, Ahmadi K (2018) Blood pressure lowering and anti-inflammatory effects of hesperidin in type 2 diabetes; a randomized double-blind controlled clinical trial. Phytother Res 32(6):1073–1079. https://doi.org/10.1002/ptr.6046

    Article  CAS  PubMed  Google Scholar 

  31. Miwa Y, Mitsuzumi H, Sunayama T, Yamada M, Okada K, Kubota M, Chaen H, Mishima Y, Kibata M (2005) Glucosyl hesperidin lowers serum triglyceride level in hypertriglyceridemic subjects through the improvement of very low-density lipoprotein metabolic abnormality. J Nutr Sci Vitaminol 51(6):460–470

    CAS  PubMed  Google Scholar 

  32. Demonty I, Lin Y, Zebregs YE, Vermeer MA, van der Knaap HC, Jakel M, Trautwein EA (2010) The citrus flavonoids hesperidin and naringin do not affect serum cholesterol in moderately hypercholesterolemic men and women. J Nutr 140(9):1615–1620. https://doi.org/10.3945/jn.110.124735

    Article  CAS  PubMed  Google Scholar 

  33. NHLBI Obesity Education Initiative (2000) The practical guide: identification, evaluation, and treatment of overweight and obesity in adults. Obesity, BMI, waist circumference, freatment overweight ; NHLBI obesity education initiative. National Institutes of Health

  34. Mohammadi M, Eghtesadi S, Vafa M, Heydari I, Salehi M, Shirbeigi E, Mohammadi H (2016) The effect of hesperidin supplementation on indices of glucose and lipid, insulin levels and insulin resistance in patients with type 2 diabetes: a randomized double-blind clinical trial. Razi J Med Sci 23(143):71–80

    Google Scholar 

  35. Willett W (2012) Nutritional epidemiology, vol 40. Oxford University Press, Oxford

    Google Scholar 

  36. Klishadi R, Khosravi A, Famouri F, Sadeghi M, Shirani S (2001) Assessment of physical activity of adolescents in Isfahan. J Shahrekord Univ Med Sci 3(2):27–33

    Google Scholar 

  37. Friedewald WT, Levy RI, Fredrickson DS (1972) Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem 18(6):499–502

    CAS  PubMed  Google Scholar 

  38. Jung UJ, Lee M-K, Park YB, Kang MA, Choi M-S (2006) Effect of citrus flavonoids on lipid metabolism and glucose-regulating enzyme mRNA levels in type-2 diabetic mice. Int J Biochem Cell Biol 38(7):1134–1145

    CAS  PubMed  Google Scholar 

  39. Jung UJ, Lee M-K, Jeong K-S, Choi M-S (2004) The hypoglycemic effects of hesperidin and naringin are partly mediated by hepatic glucose-regulating enzymes in C57BL/KsJ-db/db mice. J Nutr 134(10):2499–2503

    CAS  PubMed  Google Scholar 

  40. Ahmed OM, Mahmoud AM, Abdel-Moneim A, Ashour MB (2012) Antidiabetic effects of hesperidin and naringin in type 2 diabetic rats. Diabetol Croat 41(2):53–67

    Google Scholar 

  41. Mohammadi M, Ramezani-Jolfaie N, Lorzadeh E, Khoshbakht Y, Salehi-Abargouei A (2019) Hesperidin, a major flavonoid in orange juice, might not affect lipid profile and blood pressure: a systematic review and meta-analysis of randomized controlled clinical trials. Phytother Res 33(3):534–545

    CAS  PubMed  Google Scholar 

  42. Gorinstein S, Vargas OJM, Jaramillo NO, Salas IA, Ayala ALM, Arancibia-Avila P, Toledo F, Katrich E, Trakhtenberg S (2007) The total polyphenols and the antioxidant potentials of some selected cereals and pseudocereals. Eur Food Res Technol 225(3–4):321–328

    CAS  Google Scholar 

  43. Monforte M, Trovato A, Kirjavainen S, Forestieri A, Galati E, Lo RC (1995) Biological effects of hesperidin, a Citrus flavonoid (note II): hypolipidemic activity on experimental hypercholesterolemia in rat. Farmaco (Società chimica italiana: 1989) 50(9):595–599

    CAS  Google Scholar 

  44. Akiyama S, Katsumata S-i, Suzuki K, Nakaya Y, Ishimi Y, Uehara M (2009) Hypoglycemic and hypolipidemic effects of hesperidin and cyclodextrin-clathrated hesperetin in Goto-Kakizaki rats with type 2 diabetes. Biosci Biotechnol Biochem 73(12):2779–2782

    CAS  PubMed  Google Scholar 

  45. Gorinstein S, Leontowicz H, Leontowicz M, Krzeminski R, Gralak M, Jastrzebski Z, Park YS, Jung ST, Kang SG, Trakhtenberg S (2007) Effect of hesperidin and naringin on the plasma lipid profile and plasma antioxidant activity in rats fed a cholesterol-containing diet. J Sci Food Agric 87(7):1257–1262

    CAS  Google Scholar 

  46. Lorzadeh E, Ramezani-Jolfaie N, Mohammadi M, Khoshbakht Y, Salehi-Abargouei A (2019) The effect of hesperidin supplementation on inflammatory markers in human adults: a systematic review and meta-analysis of randomized controlled clinical trials. Chem Biol Interact 307:8–15

    CAS  PubMed  Google Scholar 

  47. Jain M, Parmar HS (2011) Evaluation of antioxidative and anti-inflammatory potential of hesperidin and naringin on the rat air pouch model of inflammation. Inflamm Res 60(5):483–491

    CAS  PubMed  Google Scholar 

  48. Kuntić V, Brborić J, Holclajtner-Antunović I, Uskoković-Marković S (2014) Evaluating the bioactive effects of flavonoid hesperidin: a new literature data survey. Vojnosanit Pregl 71(1):60–65

    PubMed  Google Scholar 

  49. Rizza S, Muniyappa R, Iantorno M, Kim J-a, Chen H, Pullikotil P, Senese N, Tesauro M, Lauro D, Cardillo C (2011) Citrus polyphenol hesperidin stimulates production of nitric oxide in endothelial cells while improving endothelial function and reducing inflammatory markers in patients with metabolic syndrome. J Clin Endocrinol Metab 96(5):E782–E792

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Choi I-Y, Kim S-J, Jeong H-J, Park S-H, Song Y-S, Lee J-H, Kang T-H, Park J-H, Hwang G-S, Lee E-J (2007) Hesperidin inhibits expression of hypoxia inducible factor-1 alpha and inflammatory cytokine production from mast cells. Mol Cell Biochem 305(1–2):153–161

    CAS  PubMed  Google Scholar 

  51. Lin HY, Shen SC, Chen YC (2005) Anti-inflammatory effect of heme oxygenase 1: glycosylation and nitric oxide inhibition in macrophages. J Cell Physiol 202(2):579–590

    CAS  PubMed  Google Scholar 

  52. Pinho-Ribeiro FA, Hohmann MS, Borghi SM, Zarpelon AC, Guazelli CF, Manchope MF, Casagrande R, Verri WA Jr (2015) Protective effects of the flavonoid hesperidin methyl chalcone in inflammation and pain in mice: role of TRPV1, oxidative stress, cytokines and NF-κB. Chem Biol Interact 228:88–99

    CAS  PubMed  Google Scholar 

  53. Vabeiryureilai M, Lalrinzuali K, Jagetia G (2015) Determination of anti-inflammatory and analgesic activities of a citrus bioflavanoid, hesperidin in mice. Immunochem Immunopathol Open Access 1(107):2

    Google Scholar 

  54. Tirkey N, Pilkhwal S, Kuhad A, Chopra K (2005) Hesperidin, a citrus bioflavonoid, decreases the oxidative stress produced by carbon tetrachloride in rat liver and kidney. BMC Pharmacol 5(1):2

    PubMed  PubMed Central  Google Scholar 

  55. Calderone V, Chericoni S, Martinelli C, Testai L, Nardi A, Morelli I, Breschi MC, Martinotti E (2004) Vasorelaxing effects of flavonoids: investigation on the possible involvement of potassium channels. Naunyn Schmiedeberg’s Arch Pharmacol 370(4):290–298

    CAS  Google Scholar 

  56. Mira L, Tereza Fernandez M, Santos M, Rocha R, Helena Florêncio M, Jennings KR (2002) Interactions of flavonoids with iron and copper ions: a mechanism for their antioxidant activity. Free Radical Res 36(11):1199–1208

    CAS  Google Scholar 

  57. Vaziri ND, Rodríguez-Iturbe B (2006) Mechanisms of disease: oxidative stress and inflammation in the pathogenesis of hypertension. Nat Rev Nephrol 2(10):582

    CAS  Google Scholar 

  58. Ikemura M, Sasaki Y, Giddings JC, Yamamoto J (2012) Preventive effects of hesperidin, glucosyl hesperidin and naringin on hypertension and cerebral thrombosis in stroke-prone spontaneously hypertensive rats. Phytother Res 26(9):1272–1277

    CAS  PubMed  Google Scholar 

  59. Ohtsuki K, Abe A, Mitsuzumi H, Kondo M, Uemura K, Iwasaki Y, Kondo Y (2003) Glucosyl hesperidin improves serum cholesterol composition and inhibits hypertrophy in vasculature. J Nutr Sci Vitaminol 49(6):447–450

    CAS  PubMed  Google Scholar 

  60. Dobiaš L, Petrová M, Vojtko R, Kristová V (2016) Long-term treatment with hesperidin improves endothelium-dependent vasodilation in femoral artery of spontaneously hypertensive rats: the involvement of NO-synthase and Kv channels. Phytother Res 30(10):1665–1671

    PubMed  Google Scholar 

  61. Ohtsuki K, Abe A, Mitsuzumi H, Kondo M, Uemura K, Iwasaki Y, Kondo Y (2002) Effects of long-term administration of hesperidin and glucosyl hesperidin to spontaneously hypertensive rats. J Nutr Sci Vitaminol 48(5):420–422

    CAS  PubMed  Google Scholar 

  62. Takumi H, Nakamura H, Simizu T, Harada R, Kometani T, Nadamoto T, Mukai R, Murota K, Kawai Y, Terao J (2012) Bioavailability of orally administered water-dispersible hesperetin and its effect on peripheral vasodilatation in human subjects: implication of endothelial functions of plasma conjugated metabolites. Food Funct 3(4):389–398

    CAS  PubMed  Google Scholar 

  63. Yamamoto M, Jokura H, Hashizume K, Ominami H, Shibuya Y, Suzuki A, Hase T, Shimotoyodome A (2013) Hesperidin metabolite hesperetin-7-O-glucuronide, but not hesperetin-3′-O-glucuronide, exerts hypotensive, vasodilatory, and anti-inflammatory activities. Food Funct 4(9):1346–1351

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study is related to the project No. 1397/61461 from Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran. We also appreciate the “Student Research Committee” and “Research & Technology Chancellor” in Shahid Beheshti University of Medical Sciences for their financial support of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azita Hekmatdoost.

Ethics declarations

Conflict of interest

The author declares that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yari, Z., Movahedian, M., Imani, H. et al. The effect of hesperidin supplementation on metabolic profiles in patients with metabolic syndrome: a randomized, double-blind, placebo-controlled clinical trial. Eur J Nutr 59, 2569–2577 (2020). https://doi.org/10.1007/s00394-019-02105-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-019-02105-2

Keywords

Navigation