Skip to main content

Advertisement

Log in

The combination of wheat peptides and fucoidan protects against chronic superficial gastritis and alters gut microbiota: a double-blinded, placebo-controlled study

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

Chronic gastritis is observed in almost half world population. Traditional medications against chronic gastritis might produce adverse effects, so alternative nutritional strategies are needed to prevent the aggravation of gastric mucosal damage. The aim of this study is to evaluate the protective effect of the combination of wheat peptides and fucoidan (WPF) on adults diagnosed with chronic superficial gastritis in a randomized, double-blind, placebo-controlled clinical trial.

Methods

Participants were randomized to receive WPF (N = 53) or placebo (N = 53) once daily for 45 days. Pathological grading of gastric mucosal damage was scored using gastroscopy. Fecal samples were collected for the determination of calprotectin, short chain fatty acids (SCFA) levels and metagenomics analysis. Questionnaires for self-reported gastrointestinal discomforts, life quality and food frequency were collected throughout the study.

Results

WPF intervention reduced gastric mucosal damage in 70% subjects (P < 0.001). Significantly less stomach pain (P < 0.001), belching (P = 0.028), bloating (P < 0.001), acid reflux (P < 0.001), loss of appetite (P = 0.021), increased food intake (P = 0.020), and promoted life quality (P = 0.014) were reported in the WPF group. WPF intervention significantly decreased fecal calprotectin level (P = 0.003) while slightly increased fecal SCFAs level (P = 0.092). In addition, we found altered microbiota composition post-intervention with increased Bifidobacterium pseudocatenulatum (P = 0.032), Eubacterium siraeum (P = 0.036), Bacteroides intestinalis (P = 0.024) and decreased Prevotella copri (P = 0.055).

Conclusions

WPF intervention could be utilized as a nutritional alternative to mitigate the progression of chronic gastritis. Furthermore, WPF played an important role in altering gut microbial profile and SCFA production, which might benefit the lower gastrointestinal tract.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

14C-UBT:

Carbon-14 urea breath test

CD:

Crohn’s disease

HP:

Helicobacter pylori

IBD:

Inflammatory bowel disease

QOL:

Quality of life

SCFA:

Short chain fatty acids

UC:

Ulcerative colitis

VAS:

Visual analog scale

WPF:

Combination of wheat peptides and fucoidan

References

  1. Du Y, Bai Y, Xie P, Fang J, Wang X, Hou X, Tian D, Wang C, Liu Y, Sha W, Wang B, Li Y, Zhang G, Li Y, Shi R, Xu J, Li Y, Huang M, Han S, Liu J, Ren X, Xie P, Wang Z, Cui L, Sheng J, Luo H, Wang Z, Zhao X, Dai N, Nie Y, Zou Y, Xia B, Fan Z, Chen Z, Lin S, Li ZS (2014) Chronic gastritis in China: a national multi-center survey. BMC Gastroenterol 14:21. https://doi.org/10.1186/1471-230x-14-21

    Article  PubMed  PubMed Central  Google Scholar 

  2. Sipponen P, Maaroos HI (2015) Chronic gastritis. Scand J Gastroenterol 50(6):657–667. https://doi.org/10.3109/00365521.2015.1019918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ddine LC, Ddine CC, Rodrigues CC, Kirsten VR, Colpo E (2012) Factors associated with chronic gastritis in patients with presence and absence of Helicobacter pylori. Arq Bras Cir Dig 25(2):96–100

    Article  PubMed  Google Scholar 

  4. Correa P, Yardley JH (1992) Grading and classification of chronic gastritis: one American response to the Sydney system. Gastroenterology 102(1):355–359

    Article  CAS  PubMed  Google Scholar 

  5. Siurala M, Sipponen P, Kekki M (1985) Chronic gastritis: dynamic and clinical aspects. Scand J Gastroenterol Suppl 109:69–76

    Article  CAS  PubMed  Google Scholar 

  6. Brenner H, Rothenbacher D, Arndt V (2009) Epidemiology of stomach cancer. Methods Mol Biol 472:467–477. https://doi.org/10.1007/978-1-60327-492-0_23

    Article  PubMed  Google Scholar 

  7. Sipponen P, Price AB (2011) The Sydney System for classification of gastritis 20 years ago. J Gastroenterol Hepatol 26(Suppl 1):31–34. https://doi.org/10.1111/j.1440-1746.2010.06536.x

    Article  PubMed  Google Scholar 

  8. Helicobacter A (2001) Gastric cancer and Helicobacter pylori: a combined analysis of 12 case control studies nested within prospective cohorts. Gut 49(3):347–353

    Article  Google Scholar 

  9. Vorobjova T, Faller G, Maaroos HI, Sipponen P, Villako K, Uibo R, Kirchner T (2000) Significant increase in antigastric autoantibodies in a long-term follow-up study of H. pylori gastritis. Virchows Arch 437(1):37–45

    Article  CAS  PubMed  Google Scholar 

  10. Kan J, Hood M, Burns C, Scholten J, Chuang J, Tian F, Pan X, Du J, Gui M (2017) A novel combination of wheat peptides and fucoidan attenuates ethanol-induced gastric mucosal damage through anti-oxidant, anti-inflammatory, and pro-survival mechanisms. Nutrients 9(9):E978. https://doi.org/10.3390/nu9090978

    Article  CAS  PubMed  Google Scholar 

  11. Kamada N, Seo SU, Chen GY, Núñez G (2013) Role of the gut microbiota in immunity and inflammatory disease. Nat Rev Immunol 13(5):321–335

    Article  CAS  PubMed  Google Scholar 

  12. Kostic AD, Xavier RJ, Gevers D (2014) The microbiome in inflammatory bowel disease: current status and the future ahead. Gastroenterology 146(6):1489–1499

    Article  CAS  PubMed  Google Scholar 

  13. Le Poul E, Loison C, Struyf S, Springael JY, Lannoy V, Decobecq ME, Brezillon S, Dupriez V, Vassart G, Van Damme J, Parmentier M, Detheux M (2003) Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation. J Biol Chem 278(28):25481–25489. https://doi.org/10.1074/jbc.M301403200

    Article  CAS  PubMed  Google Scholar 

  14. Chambers ES, Preston T, Frost G, Morrison DJ (2018) Role of Gut microbiota-generated short-chain fatty acids in metabolic and cardiovascular health. Curr Nutr Rep. https://doi.org/10.1007/s13668-018-0248-8

    Article  PubMed  PubMed Central  Google Scholar 

  15. Anand S, Mande SS (2018) Diet, microbiota and gut-lung connection. Front Microbiol 9:2147. https://doi.org/10.3389/fmicb.2018.02147

    Article  PubMed  PubMed Central  Google Scholar 

  16. Sircana A, Framarin L, Leone N, Berrutti M, Castellino F, Parente R, De Michieli F, Paschetta E, Musso G (2018) Altered gut microbiota in type 2 diabetes: just a coincidence? Curr Diabetes Rep 18(10):98. https://doi.org/10.1007/s11892-018-1057-6

    Article  CAS  Google Scholar 

  17. Valle J, Seppala K, Sipponen P, Kosunen T (1991) Disappearance of gastritis after eradication of Helicobacter pylori. A morphometric study. Scand J Gastroenterol 26(10):1057–1065

    Article  CAS  PubMed  Google Scholar 

  18. Arkkila PE, Seppala K, Farkkila MA, Veijola L, Sipponen P (2006) Helicobacter pylori eradication in the healing of atrophic gastritis: a one-year prospective study. Scand J Gastroenterol 41(7):782–790. https://doi.org/10.1080/00365520500463175

    Article  PubMed  Google Scholar 

  19. Ley RE, Turnbaugh PJ, Klein S, Gordon JI (2006) Microbial ecology: human gut microbes associated with obesity. Nature 444(7122):1022–1023. https://doi.org/10.1038/4441022a

    Article  CAS  PubMed  Google Scholar 

  20. Couzin-Frankel J (2010) Bacteria and asthma: untangling the links. Science 330(6008):1168–1169. https://doi.org/10.1126/science.330.6008.1168

    Article  CAS  PubMed  Google Scholar 

  21. Sekirov I, Russell SL, Antunes LC, Finlay BB (2010) Gut microbiota in health and disease. Physiol Rev 90(3):859–904. https://doi.org/10.1152/physrev.00045.2009

    Article  CAS  PubMed  Google Scholar 

  22. Yin H, Pan X, Song Z, Wang S, Yang L, Sun G (2014) Protective effect of wheat peptides against indomethacin-induced oxidative stress in IEC-6 cells. Nutrients 6(2):564–574. https://doi.org/10.3390/nu6020564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhang QX, Ling YF, Sun Z, Zhang L, Yu HX, Kamau SM, Lu RR (2012) Protective effect of whey protein hydrolysates against hydrogen peroxide-induced oxidative stress on PC12 cells. Biotechnol Lett 34(11):2001–2006. https://doi.org/10.1007/s10529-012-1017-1

    Article  CAS  PubMed  Google Scholar 

  24. Yang X, Wang Y, Wang F, Xia H, Pan X, Zhu H, Ruizeng GU, Yongqing MA, Tang H, Wang S (2016) Effect of hydrolyzed wheat protein peptide on ethanol-induced acute gastric mucosal damage in rats. Food Sci 37:178–182

    Google Scholar 

  25. Hong Y, Pan XC, Wang SK, Yang LG, Sun GJ (2014) Protective effect of wheat peptides against small intestinal damage induced by non-steroidal anti-inflammatory drugs in rats. J Integr Agr 13(9):2019–2027

    Article  CAS  Google Scholar 

  26. Wijesinghe WAJP, Jeon YJ (2012) Biological activities and potential industrial applications of fucose rich sulfated polysaccharides and fucoidans isolated from brown seaweeds: a review. Carbohydr Polym 88:13–20. https://doi.org/10.1016/j.carbpol.2011.12.029

    Article  CAS  Google Scholar 

  27. Cumashi A, Ushakova NA, Preobrazhenskaya ME, D’Incecco A, Piccoli A, Totani L, Tinari N, Morozevich GE, Berman AE, Bilan MI, Usov AI, Ustyuzhanina NE, Grachev AA, Sanderson CJ, Kelly M, Rabinovich GA, Iacobelli S, Nifantiev NE (2007) A comparative study of the anti-inflammatory, anticoagulant, antiangiogenic, and antiadhesive activities of nine different fucoidans from brown seaweeds. Glycobiology 17(5):541–552. https://doi.org/10.1093/glycob/cwm014

    Article  CAS  PubMed  Google Scholar 

  28. Yang C, Chung D, Shin IS, Lee H, Kim J, Lee Y, You S (2008) Effects of molecular weight and hydrolysis conditions on anticancer activity of fucoidans from sporophyll of Undaria pinnatifida. Int J Biol Macromol 43(5):433–437. https://doi.org/10.1016/j.ijbiomac.2008.08.006

    Article  CAS  PubMed  Google Scholar 

  29. Drossman DA (2006) The functional gastrointestinal disorders and the Rome III process. Gastroenterology 130(5):1377–1390

    Article  PubMed  Google Scholar 

  30. Price AB (1991) The Sydney System: histological division. J Gastroenterol Hepatol 6(3):209–222

    Article  CAS  PubMed  Google Scholar 

  31. Dixon MF, Genta RM, Yardley JH, Correa P (1996) Classification and grading of gastritis. The updated Sydney System. International Workshop on the Histopathology of Gastritis, Houston 1994. Am J Surg Pathol 20(10):1161–1181

    Article  CAS  PubMed  Google Scholar 

  32. Yu Z (2004) Endoscopic classification and trial standards on treatment of chronic gastritis. Chin J Dig Endosc 21(2):77–78

    Google Scholar 

  33. CFDA (2003) Method for the assessment of protection of gastric mucosa function. Technical Standards for Testing and Assessment for Health Food, pp 163–166

  34. Group TW (1995) The World Health Organization Quality of Life assessment (WHOQOL): position paper from the World Health Organization. Soc Sci Med 41(10):1403–1409

    Article  Google Scholar 

  35. Waller PA, Gopal PK, Leyer GJ, Ouwehand AC, Reifer C, Stewart ME, Miller LE (2011) Dose-response effect of Bifidobacterium lactis HN019 on whole gut transit time and functional gastrointestinal symptoms in adults. Scand J Gastroenterol 46(9):1057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mei H, Sun J, Zhuo QJ, Yue XY (2017) Effects of cow’s milk beta-casein variants on symptoms of milk intolerance in Chinese adults: a multicentre, randomised controlled study. Nutr J 16(1):72

    Article  CAS  Google Scholar 

  37. Zhao L, Zhang F, Ding X, Wu G, Lam YY, Wang X, Fu H, Xue X, Lu C, Ma J (2018) Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes. Science 359(6380):1151–1156

    Article  CAS  PubMed  Google Scholar 

  38. Roat KJ, Pedro CL, Kristoffer F, Jaime HC, Li SS, Marja D, Yvonne VA, Georg Z, Shinichi S, Peer B (2016) MOCAT2: a metagenomic assembly, annotation and profiling framework. Bioinformatics 32(16):2520–2523

    Article  CAS  Google Scholar 

  39. Li R, Yu C, Li Y, Lam TW, Yiu SM, Kristiansen K, Wang J (2009) SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics 25(15):1966–1967

    Article  CAS  PubMed  Google Scholar 

  40. Fu L, Niu B, Zhu Z, Wu S, Li W (2012) CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28(23):3150–3152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Truong DT, Franzosa EA, Tickle TL, Scholz M, Weingart G, Pasolli E, Tett A, Huttenhower C, Segata N (2015) MetaPhlAn2 for enhanced metagenomic taxonomic profiling. Nat Methods 12(10):902

    Article  CAS  PubMed  Google Scholar 

  42. Sung J, Kim S, Cabatbat JJT, Jang S, Jin YS, Jung GY, Chia N, Kim PJ (2017) Global metabolic interaction network of the human gut microbiota for context-specific community-scale analysis. Nat Commun 8:15393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. François IE, Lescroart O, Veraverbeke WS, Marzorati M, Possemiers S, Evenepoel P, Hamer H, Houben E, Windey K, Welling GW (2012) Effects of a wheat bran extract containing arabinoxylan oligosaccharides on gastrointestinal health parameters in healthy adult human volunteers: a double-blind, randomised, placebo-controlled, cross-over trial. Br J Nutr 108(12):2229–2242

    Article  PubMed  CAS  Google Scholar 

  44. Benarye E, Goldin E, Wengrower D, Stamper A, Kohn R, Berry E (2002) Wheat grass juice in the treatment of active distal ulcerative colitis: a randomized double-blind placebo-controlled trial. Scand J Gastroenterol 37(4):444–449

    Article  CAS  Google Scholar 

  45. Renaldi K, Simadibrata M, Syam AF, Rani AA, Krisnuhoni E (2011) Influence of fucoidan in mucus thickness of gastric mucosa in patients with chronic gastritis. Indones J Gastroenterol Hepatol Dig Endosc 12(2):79–84

    Google Scholar 

  46. Raghavendran HRB, Srinivasan P, Rekha S (2011) Immunomodulatory activity of fucoidan against aspirin-induced gastric mucosal damage in rats. Int Immunopharmacol 11(2):157–163

    Article  CAS  PubMed  Google Scholar 

  47. Wang Y, Su W, Zhang C, Xue C, Chang Y, Wu X, Tang Q, Wang J (2012) Protective effect of sea cucumber (Acaudina molpadioides) fucoidan against ethanol-induced gastric damage. Food Chem 133(4):1414–1419

    Article  CAS  Google Scholar 

  48. Shi H, Chang Y, Gao Y, Wang X, Chen X, Wang Y, Xue C, Tang Q (2017) Dietary fucoidan of Acaudina molpadioides alters gut microbiota and mitigates intestinal mucosal injury induced by cyclophosphamide. Food Funct 8(9):3383–3393

    Article  CAS  PubMed  Google Scholar 

  49. Shibata H, Iimuro M, Uchiya N, Kawamori T, Nagaoka M, Ueyama S, Hashimoto S, Yokokura T, Sugimura T, Wakabayashi K (2010) Preventive effects of cladosiphon fucoidan against Helicobacter pylori infection in Mongolian gerbils. Helicobacter 8(1):59–65

    Article  Google Scholar 

  50. Besednova NN, Zaporozhets TS, Somova LM, Kuznetsova TA (2015) Prospects for the use of extracts and polysaccharides from marine algae to prevent and treat the diseases caused by Helicobacter pylori. Helicobacter 20(2):89–97

    Article  CAS  PubMed  Google Scholar 

  51. Simon P, Goode P, Mobasseri A, Zopf D (1997) Inhibition of Helicobacter pylori binding to gastrointestinal epithelial cells by sialic acid-containing oligosaccharides. Infect Immun 65(2):750–757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lehmann FS, Burri E, Beglinger C (2015) The role and utility of faecal markers in inflammatory bowel disease. Ther Adv Gastroenterol 8(1):23–36

    Article  CAS  Google Scholar 

  53. Røseth AG, Schmidt PM, Fagerhol MK (1998) Correlation between faecal excretion of indium-111-labelled granulocytes and calprotectin, a granulocyte marker protein, in patients with inflammatory bowel disease. Scand J Gastroenterol 34(1):50–54

    Google Scholar 

  54. Costa F, Mumolo MG, Ceccarelli L, Bellini M, Romano MR, Sterpi C, Ricchiuti A, Marchi S, Bottai M (2005) Calprotectin is a stronger predictive marker of relapse in ulcerative colitis than in Crohn’s disease. Gut 54(3):364–368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Massimo Montalto, Antonella Gallo, Gianluca Ianiro, Luca Santoro, Ferruccio Onofrio (2010) Can chronic gastritis cause an increase in fecal calprotectin concentrations? World J Gastroenterol 16(27):3406

    Article  CAS  Google Scholar 

  56. Summerton CB, Longlands MG, Wiener K, Shreeve DR (2002) Faecal calprotectin: a marker of inflammation throughout the intestinal tract. Eur J Gastroenterol Hepatol 14(8):841–845

    Article  CAS  PubMed  Google Scholar 

  57. Gibson GR, Roberfroid MB (1995) Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J Nutr 125(6):1401–1412

    Article  CAS  PubMed  Google Scholar 

  58. Gibson GR, Probert HM, Loo JV, Rastall RA, Roberfroid MB (2004) Dietary modulation of the human colonic microbiota: updating the concept of prebiotics. Nutr Res Rev 17(2):259–275

    Article  CAS  PubMed  Google Scholar 

  59. Roberfroid MB (2000) Prebiotics and probiotics: are they functional foods?–. Am J Clin Nutr 71(6):1682S–1687S

    Article  CAS  PubMed  Google Scholar 

  60. Zaporozhets TS, Besednova NN, Kuznetsova TA, Zvyagintseva TN, Makarenkova ID, Kryzhanovsky SP, Melnikov VG (2014) The prebiotic potential of polysaccharides and extracts of seaweeds. Russ J Mar Biol 40(1):1–9

    Article  CAS  Google Scholar 

  61. Shang Q, Shan X, Cai C, Hao J, Li G, Yu G (2016) Dietary fucoidan modulates the gut microbiota in mice by increasing the abundance of Lactobacillus and Ruminococcaceae. Food Funct 7(7):3224

    Article  CAS  PubMed  Google Scholar 

  62. Lynch MB, Sweeney T, Callan JJ, O’Sullivan JT, O’Doherty JV (2010) The effect of dietary Laminaria-derived laminarin and fucoidan on nutrient digestibility, nitrogen utilisation, intestinal microflora and volatile fatty acid concentration in pigs. J Sci Food Agric 133(1):157–160

    Google Scholar 

  63. Wang Y, Han F, Hu B, Li J, Yu W (2006) In vivo prebiotic properties of alginate oligosaccharides prepared through enzymatic hydrolysis of alginate. Nutr Res 26(11):597–603

    Article  CAS  Google Scholar 

  64. Shang Q, Song G, Zhang M, Shi J, Xu C, Hao J, Li G, Yu G (2017) Dietary fucoidan improves metabolic syndrome in association with increased Akkermansia population in the gut microbiota of high-fat diet-fed mice. J Funct Foods 28:138–146

    Article  CAS  Google Scholar 

  65. Boffa LC, Lupton JR, Mariani MR, Ceppi M, Newmark HL, Scalmati A, Lipkin M (1992) Modulation of colonic epithelial cell proliferation, histone acetylation, and luminal short chain fatty acids by variation of dietary fiber (wheat bran) in rats. Cancer Res 52(21):5906–5912

    CAS  PubMed  Google Scholar 

  66. Neyrinck AM, Possemiers S, Druart C, Van TDW, De FB, Cani PD, Larondelle Y, Delzenne NM (2011) Prebiotic effects of wheat arabinoxylan related to the increase in bifidobacteria, Roseburia and Bacteroides/Prevotella in diet-induced obese mice. PLoS One 6(6):e20944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Davila AM, Blachier F, Gotteland M, Andriamihaja M, Benetti PH, Sanz Y, Tomé D (2013) Intestinal luminal nitrogen metabolism: role of the gut microbiota and consequences for the host. Pharmacol Res 69(1):114–126

    Article  PubMed  Google Scholar 

  68. Caminero A, Nistal E, Arias L, Vivas S, Comino I, Real A, Sousa C, de Morales JM, Ferrero MA, Rodríguez-Aparicio LB (2012) A gluten metabolism study in healthy individuals shows the presence of faecal glutenasic activity. Eur J Nutr 51(3):293–299

    Article  CAS  PubMed  Google Scholar 

  69. De Palma G, Nadal I, Collado MC, Sanz Y (2009) Effects of a gluten-free diet on gut microbiota and immune function in healthy adult human subjects. Br J Nutr 102(8):1154–1160

    Article  PubMed  CAS  Google Scholar 

  70. Caminero A, Nistal E, Herrán AR, Pérez-Andrés J, Vaquero L, Vivas S, de Morales JMR, Casqueiro J (2014) Gluten metabolism in humans: involvement of the gut microbiota. In: Wheat and rice in disease prevention and health. Elsevier, pp 157–170. https://www.sciencedirect.com/science/article/pii/B9780124017160000131

  71. Caminero A, Nistal E, Herrán AR, Pérez-Andrés J, Ferrero MA, Ayala LV, Vivas S, de Morales JMR, Albillos SM, Casqueiro FJ (2015) Differences in gluten metabolism among healthy volunteers, coeliac disease patients and first-degree relatives. Br J Nutr 114(8):1157–1167

    Article  CAS  PubMed  Google Scholar 

  72. Laparra JM, Sanz Y (2010) Bifidobacteria inhibit the inflammatory response induced by gliadins in intestinal epithelial cells via modifications of toxic peptide generation during digestion. J Cell Biochem 109(4):801–807

    CAS  PubMed  Google Scholar 

  73. Laparra JM, Olivares M, Gallina O, Sanz Y (2012) Bifidobacterium longum CECT 7347 modulates immune responses in a gliadin-induced enteropathy animal model. PLoS One 7(2):e30744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Sánchez E, Laparra JM, Sanz Y (2012) Discerning the role of Bacteroides fragilis in celiac disease pathogenesis. Appl Environ Microbiol 78(18):6507–6515

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Kolho KL, Korpela K, Jaakkola T, Pichai MVA, Zoetendal EG, Salonen A, Vos WMD (2015) Fecal microbiota in pediatric inflammatory bowel disease and its relation to inflammation. Am J Gastroenterol 110(6):921

    Article  PubMed  Google Scholar 

  76. Lucke K, Miehlke S, Jacobs E, Schuppler M (2006) Prevalence of Bacteroides and Prevotella spp. in ulcerative colitis. J Med Microbiol 55(5):617

    Article  CAS  PubMed  Google Scholar 

  77. Scher JU, Sczesnak A, Longman RS, Segata N, Ubeda C, Bielski C, Rostron T, Cerundolo V, Pamer EG, Abramson SB (2013) Expansion of intestinal Prevotella copri correlates with enhanced susceptibility to arthritis. Elife Sci 2(1629):e01202

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Li Zhang from SPRIM China for their great work in coordinating the clinical trial.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Du.

Ethics declarations

Conflict of interest

The authors declared that they have no conflicts of interest to this work.

Ethics statement

The study was conducted according to the guidelines laid down in the 1964 Declaration of Helsinki and its later amendments. All procedures involving human subjects were reviewed and approved by the IRB of Shanghai Nutrition Society. Written informed consent was obtained from all participants.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 992 kb)

Supplementary material 2 (DOCX 70 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kan, J., Cheng, J., Xu, L. et al. The combination of wheat peptides and fucoidan protects against chronic superficial gastritis and alters gut microbiota: a double-blinded, placebo-controlled study. Eur J Nutr 59, 1655–1666 (2020). https://doi.org/10.1007/s00394-019-02020-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-019-02020-6

Keywords

Navigation