Skip to main content
Log in

Moderate chronic ethanol consumption exerts beneficial effects on nonalcoholic fatty liver in mice fed a high-fat diet: possible role of higher formation of triglycerides enriched in monounsaturated fatty acids

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

Several clinical studies suggested that light-to-moderate alcohol intake could alleviate nonalcoholic fatty liver disease (NAFLD), but the underlying mechanism is still poorly understood.

Methods

Mice fed a high-fat diet (HFD) were submitted or not to moderate ethanol intake for 3 months (ca. 10 g/kg/day) via drinking water. Biochemical, analytical and transcriptomic analyses were performed in serum and liver.

Results

Serum ethanol concentrations in ethanol-treated HFD mice comprised between 0.5 and 0.7 g/l throughout the experiment. NAFLD improvement was observed in ethanol-treated HFD mice as assessed by reduced serum transaminase activity. This was associated with less microvesicular and more macrovacuolar steatosis, the absence of apoptotic hepatocytes and a trend towards less fibrosis. Liver lipid analysis showed increased amounts of fatty acids incorporated in triglycerides and phospholipids, reduced proportion of palmitic acid in total lipids and higher desaturation index, thus suggesting enhanced stearoyl-coenzyme A desaturase activity. mRNA expression of several glycolytic and lipogenic enzymes was upregulated. Genome-wide expression profiling and gene set enrichment analysis revealed an overall downregulation of the expression of genes involved in collagen fibril organization and leukocyte chemotaxis and an overall upregulation of the expression of genes involved in oxidative phosphorylation and mitochondrial respiratory chain complex assembly. In addition, mRNA expression of several proteasome subunits was upregulated in ethanol-treated HFD mice.

Conclusions

Moderate chronic ethanol consumption may alleviate NAFLD by several mechanisms including the generation of non-toxic lipid species, reduced expression of profibrotic and proinflammatory genes, restoration of mitochondrial function and possible stimulation of proteasome activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Rehm J (2011) The risks associated with alcohol use and alcoholism. Alcohol Res Health 34:135–143

    PubMed  PubMed Central  Google Scholar 

  2. Seitz HK, Bataller R, Cortez-Pinto H et al (2018) Publisher correction: Alcoholic liver disease. Nat Rev Dis Primers 4:18. https://doi.org/10.1038/s41572-018-0021-8

    Article  PubMed  Google Scholar 

  3. Louvet A, Mathurin P (2015) Alcoholic liver disease: mechanisms of injury and targeted treatment. Nat Rev Gastroenterol Hepatol 12:231–242. https://doi.org/10.1038/nrgastro.2015.35

    Article  PubMed  Google Scholar 

  4. GBD 2016 Alcohol Collaborators (2018) Alcohol use and burden for 195 countries and territories, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet 392:1015–1035. https://doi.org/10.1016/S0140-6736(18)31310-2

    Article  PubMed Central  Google Scholar 

  5. Bonnet F, Disse E, Laville M et al (2012) Moderate alcohol consumption is associated with improved insulin sensitivity, reduced basal insulin secretion rate and lower fasting glucagon concentration in healthy women. Diabetologia 55:3228–3237. https://doi.org/10.1007/s00125-012-2701-3

    Article  CAS  PubMed  Google Scholar 

  6. Poli A, Marangoni F, Avogaro A et al (2013) Moderate alcohol use and health: a consensus document. Nutr Metab Cardiovasc Dis 23:487–504. https://doi.org/10.1016/j.numecd.2013.02.007

    Article  CAS  PubMed  Google Scholar 

  7. Ajmera VH, Terrault NA, Harrison SA (2017) Is moderate alcohol use in nonalcoholic fatty liver disease good or bad? A critical review. Hepatology 65:2090–2099. https://doi.org/10.1002/hep.29055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dunn W, Sanyal AJ, Brunt EM et al (2012) Modest alcohol consumption is associated with decreased prevalence of steatohepatitis in patients with non-alcoholic fatty liver disease (NAFLD). J Hepatol 57:384–391. https://doi.org/10.1016/j.jhep.2012.03.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kwon HK, Greenson JK, Conjeevaram HS (2014) Effect of lifetime alcohol consumption on the histological severity of non-alcoholic fatty liver disease. Liver Int 34:129–135. https://doi.org/10.1111/liv.12230

    Article  CAS  PubMed  Google Scholar 

  10. Moriya A, Iwasaki Y, Ohguchi S et al (2015) Roles of alcohol consumption in fatty liver: a longitudinal study. J Hepatol 62:921–927. https://doi.org/10.1016/j.jhep.2014.11.025

    Article  CAS  PubMed  Google Scholar 

  11. Seitz HK, Mueller S, Hellerbrand C, Liangpunsakul S (2015) Effect of chronic alcohol consumption on the development and progression of non-alcoholic fatty liver disease (NAFLD). Hepatobiliary Surg Nutr 4:147–151. https://doi.org/10.3978/j.issn.2304-3881.2014.12.01

    Article  PubMed  PubMed Central  Google Scholar 

  12. Kwon I, Jun DW, Moon J-H (2018) Effects of moderate alcohol drinking in patients with nonalcoholic fatty liver disease. Gut Liver. https://doi.org/10.5009/gnl18175

    Article  PubMed  PubMed Central  Google Scholar 

  13. Ajmera V, Belt P, Wilson LA et al (2018) Among patients with nonalcoholic fatty liver disease, modest alcohol use is associated with less improvement in histologic steatosis and steatohepatitis. Clin Gastroenterol Hepatol 16:1511.e5–1520.e5. https://doi.org/10.1016/j.cgh.2018.01.026

    Article  Google Scholar 

  14. Sookoian S, Flichman D, Castaño GO, Pirola CJ (2016) Mendelian randomisation suggests no beneficial effect of moderate alcohol consumption on the severity of nonalcoholic fatty liver disease. Aliment Pharmacol Ther 44:1224–1234. https://doi.org/10.1111/apt.13828

    Article  CAS  PubMed  Google Scholar 

  15. Fromenty B, Vadrot N, Massart J et al (2009) Chronic ethanol consumption lessens the gain of body weight, liver triglycerides, and diabetes in obese ob/ob mice. J Pharmacol Exp Ther 331:23–34. https://doi.org/10.1124/jpet.109.155168

    Article  CAS  PubMed  Google Scholar 

  16. Kanuri G, Landmann M, Priebs J et al (2016) Moderate alcohol consumption diminishes the development of non-alcoholic fatty liver disease (NAFLD) in ob/ob mice. Eur J Nutr 55:1153–1164. https://doi.org/10.1007/s00394-015-0929-7

    Article  CAS  PubMed  Google Scholar 

  17. Osaki A, Okazaki Y, Kimoto A et al (2014) Beneficial effect of a low dose of ethanol on liver function and serum urate in rats fed a high-fat diet. J Nutr Sci Vitaminol 60:408–412. https://doi.org/10.3177/jnsv.60.408

    Article  CAS  PubMed  Google Scholar 

  18. Sun F, Zhuang Z, Zhang D et al (2018) Chronic moderate alcohol consumption relieves high-fat high-cholesterol diet-induced liver fibrosis in a rat model. Clin Exp Pharmacol Physiol 45:1046–1055. https://doi.org/10.1111/1440-1681.12976

    Article  CAS  PubMed  Google Scholar 

  19. Godfrey J, Jeanguenin L, Castro N et al (2015) Chronic voluntary ethanol consumption induces favorable ceramide profiles in selectively bred alcohol-preferring (P) rats. PLoS One 10:e0139012. https://doi.org/10.1371/journal.pone.0139012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Klarich DS, Penprase J, Cintora P et al (2017) Effects of moderate alcohol consumption on gene expression related to colonic inflammation and antioxidant enzymes in rats. Alcohol 61:25–31. https://doi.org/10.1016/j.alcohol.2017.02.179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Justice M, Ferrugia A, Beidler J et al (2019) Effects of moderate ethanol consumption on lipid metabolism and inflammation through regulation of gene expression in rats. Alcohol Alcohol 54:5–12. https://doi.org/10.1093/alcalc/agy079

    Article  CAS  PubMed  Google Scholar 

  22. Buron N, Porceddu M, Roussel C et al (2017) Chronic and low exposure to a pharmaceutical cocktail induces mitochondrial dysfunction in liver and hyperglycemia: differential responses between lean and obese mice. Environ Toxicol 32:1375–1389. https://doi.org/10.1002/tox.22331

    Article  CAS  PubMed  Google Scholar 

  23. Trak-Smayra V, Paradis V, Massart J et al (2011) Pathology of the liver in obese and diabetic ob/ob and db/db mice fed a standard or high-calorie diet. Int J Exp Pathol 92:413–421. https://doi.org/10.1111/j.1365-2613.2011.00793.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gailhouste L, Le Grand Y, Odin C et al (2010) Fibrillar collagen scoring by second harmonic microscopy: a new tool in the assessment of liver fibrosis. J Hepatol 52:398–406. https://doi.org/10.1016/j.jhep.2009.12.009

    Article  CAS  PubMed  Google Scholar 

  25. Tabet E, Genet V, Tiaho F et al (2016) Chlordecone potentiates hepatic fibrosis in chronic liver injury induced by carbon tetrachloride in mice. Toxicol Lett 255:1–10. https://doi.org/10.1016/j.toxlet.2016.02.005

    Article  CAS  PubMed  Google Scholar 

  26. Bucher S, Le Guillou D, Allard J et al (2018) Possible involvement of mitochondrial dysfunction and oxidative stress in a cellular model of NAFLD progression induced by benzo[a]pyrene/ethanol CoExposure. Oxid Med Cell Longev 2018:4396403. https://doi.org/10.1155/2018/4396403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Le Guillou D, Bucher S, Begriche K et al (2018) Drug-induced alterations of mitochondrial DNA homeostasis in steatotic and nonsteatotic HepaRG cells. J Pharmacol Exp Ther 365:711–726. https://doi.org/10.1124/jpet.117.246751

    Article  CAS  PubMed  Google Scholar 

  28. Baraibar MA, Ladouce R, Friguet B (2013) Proteomic quantification and identification of carbonylated proteins upon oxidative stress and during cellular aging. J Proteom 92:63–70. https://doi.org/10.1016/j.jprot.2013.05.008

    Article  CAS  Google Scholar 

  29. Bucher S, Tête A, Podechard N et al (2018) Co-exposure to benzo[a]pyrene and ethanol induces a pathological progression of liver steatosis in vitro and in vivo. Sci Rep 8:5963. https://doi.org/10.1038/s41598-018-24403-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rioux V, Catheline D, Bouriel M, Legrand P (2005) Dietary myristic acid at physiologically relevant levels increases the tissue content of C20:5n-3 and C20:3n-6 in the rat. Reprod Nutr Dev 45:599–612. https://doi.org/10.1051/rnd:2005048

    Article  CAS  PubMed  Google Scholar 

  31. Rioux V, Lemarchal P, Legrand P (2000) Myristic acid, unlike palmitic acid, is rapidly metabolized in cultured rat hepatocytes. J Nutr Biochem 11:198–207. https://doi.org/10.1016/S0955-2863(00)00065-6

    Article  CAS  PubMed  Google Scholar 

  32. Rioux V, Pédrono F, Blanchard H et al (2013) Trans-vaccenate is Δ13-desaturated by FADS3 in rodents. J Lipid Res 54:3438–3452. https://doi.org/10.1194/jlr.M042572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ravinet Trillou C, Delgorge C, Menet C et al (2004) CB1 cannabinoid receptor knockout in mice leads to leanness, resistance to diet-induced obesity and enhanced leptin sensitivity. Int J Obes Relat Metab Disord 28:640–648. https://doi.org/10.1038/sj.ijo.0802583

    Article  CAS  PubMed  Google Scholar 

  34. Guerville M, Leroy A, Sinquin A et al (2017) Western-diet consumption induces alteration of barrier function mechanisms in the ileum that correlates with metabolic endotoxemia in rats. Am J Physiol Endocrinol Metab 313:E107–E120. https://doi.org/10.1152/ajpendo.00372.2016

    Article  PubMed  Google Scholar 

  35. Goldstein DB, Kakihana R (1977) Circadian rhythms of ethanol consumption by mice: a simple computer analysis for chronopharmacology. Psychopharmacology 52:41–45. https://doi.org/10.1007/BF00426598

    Article  CAS  PubMed  Google Scholar 

  36. Jelic P, Shih MF, Taberner PV (1998) Diurnal variation in plasma ethanol levels of TO and CBA mice on chronic ethanol drinking or ethanol liquid diet schedules. Psychopharmacology 138:143–150. https://doi.org/10.1007/s002130050656

    Article  CAS  PubMed  Google Scholar 

  37. Haczeyni F, Yeh MM, Ioannou GN et al (2018) Mouse models of non-alcoholic steatohepatitis: a reflection on recent literature. J Gastroenterol Hepatol 33:1312–1320. https://doi.org/10.1111/jgh.14122

    Article  PubMed  Google Scholar 

  38. Livy DJ, Parnell SE, West JR (2003) Blood ethanol concentration profiles: a comparison between rats and mice. Alcohol 29:165–171. https://doi.org/10.1016/S0741-8329(03)00025-9

    Article  CAS  PubMed  Google Scholar 

  39. Stead AH, Moffat AC (1983) A collection of therapeutic, toxic and fatal blood drug concentrations in man. Hum Toxicol 2:437–464. https://doi.org/10.1177/096032718300200301

    Article  CAS  PubMed  Google Scholar 

  40. Schulz M, Iwersen-Bergmann S, Andresen H, Schmoldt A (2012) Therapeutic and toxic blood concentrations of nearly 1,000 drugs and other xenobiotics. Crit Care 16:R136. https://doi.org/10.1186/cc11441

    Article  PubMed  PubMed Central  Google Scholar 

  41. Ronis MJ, Huang J, Crouch J et al (1993) Cytochrome P450 CYP 2E1 induction during chronic alcohol exposure occurs by a two-step mechanism associated with blood alcohol concentrations in rats. J Pharmacol Exp Ther 264:944–950

    CAS  PubMed  Google Scholar 

  42. Badger TM, Huang J, Ronis M, Lumpkin CK (1993) Induction of cytochrome P450 2E1 during chronic ethanol exposure occurs via transcription of the CYP 2E1 gene when blood alcohol concentrations are high. Biochem Biophys Res Commun 190:780–785. https://doi.org/10.1006/bbrc.1993.1117

    Article  CAS  PubMed  Google Scholar 

  43. Roberts BJ, Song BJ, Soh Y et al (1995) Ethanol induces CYP2E1 by protein stabilization. Role of ubiquitin conjugation in the rapid degradation of CYP2E1. J Biol Chem 270:29632–29635. https://doi.org/10.1074/jbc.270.50.29632

    Article  CAS  PubMed  Google Scholar 

  44. Wang Y, Seitz HK, Wang X-D (2010) Moderate alcohol consumption aggravates high-fat diet induced steatohepatitis in rats. Alcohol Clin Exp Res 34:567–573. https://doi.org/10.1111/j.1530-0277.2009.01122.x

    Article  CAS  PubMed  Google Scholar 

  45. Sanchez Vega MC, Chong S, Burne THJ (2013) Early gestational exposure to moderate concentrations of ethanol alters adult behaviour in C57BL/6J mice. Behav Brain Res 252:326–333. https://doi.org/10.1016/j.bbr.2013.06.003

    Article  CAS  PubMed  Google Scholar 

  46. Stragier E, Martin V, Davenas E et al (2015) Brain plasticity and cognitive functions after ethanol consumption in C57BL/6 J mice. Transl Psychiatry 5:e696. https://doi.org/10.1038/tp.2015.183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Haouzi D, Lekehal M, Tinel M et al (2001) Prolonged, but not acute, glutathione depletion promotes Fas-mediated mitochondrial permeability transition and apoptosis in mice. Hepatology 33:1181–1188. https://doi.org/10.1053/jhep.2001.24235

    Article  CAS  PubMed  Google Scholar 

  48. Lacronique V, Mignon A, Fabre M et al (1996) Bcl-2 protects from lethal hepatic apoptosis induced by an anti-Fas antibody in mice. Nat Med 2:80–86. https://doi.org/10.1038/nm0196-80

    Article  CAS  PubMed  Google Scholar 

  49. Nova E, Baccan GC, Veses A et al (2012) Potential health benefits of moderate alcohol consumption: current perspectives in research. Proc Nutr Soc 71:307–315. https://doi.org/10.1017/S0029665112000171

    Article  CAS  PubMed  Google Scholar 

  50. Fang H, Judd RL (2018) Adiponectin regulation and function. Compr Physiol 8:1031–1063. https://doi.org/10.1002/cphy.c170046

    Article  PubMed  Google Scholar 

  51. Polyzos SA, Kountouras J, Zavos C, Tsiaousi E (2010) The role of adiponectin in the pathogenesis and treatment of non-alcoholic fatty liver disease. Diabetes Obes Metab 12:365–383. https://doi.org/10.1111/j.1463-1326.2009.01176.x

    Article  CAS  PubMed  Google Scholar 

  52. Legrand P, Catheline D, Fichot MC, Lemarchal P (1997) Inhibiting delta9-desaturase activity impairs triacylglycerol secretion in cultured chicken hepatocytes. J Nutr 127:249–256. https://doi.org/10.1093/jn/127.2.249

    Article  CAS  PubMed  Google Scholar 

  53. Attie AD, Krauss RM, Gray-Keller MP et al (2002) Relationship between stearoyl-CoA desaturase activity and plasma triglycerides in human and mouse hypertriglyceridemia. J Lipid Res 43:1899–1907. https://doi.org/10.1194/jlr.M200189-JLR200

    Article  CAS  PubMed  Google Scholar 

  54. Cazanave SC, Gores GJ (2010) Mechanisms and clinical implications of hepatocyte lipoapoptosis. Clin Lipidol 5:71–85. https://doi.org/10.2217/clp.09.85

    Article  PubMed  PubMed Central  Google Scholar 

  55. Hirsova P, Ibrahim SH, Gores GJ, Malhi H (2016) Lipotoxic lethal and sublethal stress signaling in hepatocytes: relevance to NASH pathogenesis. J Lipid Res 57:1758–1770. https://doi.org/10.1194/jlr.R066357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Marra F, Svegliati-Baroni G (2018) Lipotoxicity and the gut-liver axis in NASH pathogenesis. J Hepatol 68:280–295. https://doi.org/10.1016/j.jhep.2017.11.014

    Article  CAS  PubMed  Google Scholar 

  57. Begriche K, Massart J, Robin M-A et al (2013) Mitochondrial adaptations and dysfunctions in nonalcoholic fatty liver disease. Hepatology 58:1497–1507. https://doi.org/10.1002/hep.26226

    Article  CAS  PubMed  Google Scholar 

  58. Simões ICM, Fontes A, Pinton P et al (2018) Mitochondria in non-alcoholic fatty liver disease. Int J Biochem Cell Biol 95:93–99. https://doi.org/10.1016/j.biocel.2017.12.019

    Article  CAS  PubMed  Google Scholar 

  59. Hirsova P, Ibrahim SH, Krishnan A et al (2016) Lipid-induced signaling causes release of inflammatory extracellular vesicles from hepatocytes. Gastroenterology 150:956–967. https://doi.org/10.1053/j.gastro.2015.12.037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Puri P, Baillie RA, Wiest MM et al (2007) A lipidomic analysis of nonalcoholic fatty liver disease. Hepatology 46:1081–1090. https://doi.org/10.1002/hep.21763

    Article  CAS  PubMed  Google Scholar 

  61. Listenberger LL, Han X, Lewis SE et al (2003) Triglyceride accumulation protects against fatty acid-induced lipotoxicity. Proc Natl Acad Sci USA 100:3077–3082. https://doi.org/10.1073/pnas.0630588100

    Article  CAS  PubMed  Google Scholar 

  62. Busch AK, Gurisik E, Cordery DV et al (2005) Increased fatty acid desaturation and enhanced expression of stearoyl coenzyme A desaturase protects pancreatic beta-cells from lipoapoptosis. Diabetes 54:2917–2924. https://doi.org/10.2337/diabetes.54.10.2917

    Article  CAS  PubMed  Google Scholar 

  63. Alkhouri N, Dixon LJ, Feldstein AE (2009) Lipotoxicity in nonalcoholic fatty liver disease: not all lipids are created equal. Expert Rev Gastroenterol Hepatol 3:445–451. https://doi.org/10.1586/egh.09.32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Li ZZ, Berk M, McIntyre TM, Feldstein AE (2009) Hepatic lipid partitioning and liver damage in nonalcoholic fatty liver disease: role of stearoyl-CoA desaturase. J Biol Chem 284:5637–5644. https://doi.org/10.1074/jbc.M807616200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Yamaguchi K, Yang L, McCall S et al (2007) Inhibiting triglyceride synthesis improves hepatic steatosis but exacerbates liver damage and fibrosis in obese mice with nonalcoholic steatohepatitis. Hepatology 45:1366–1374. https://doi.org/10.1002/hep.21655

    Article  CAS  PubMed  Google Scholar 

  66. Thiam AR, Farese RV, Walther TC (2013) The biophysics and cell biology of lipid droplets. Nat Rev Mol Cell Biol 14:775–786. https://doi.org/10.1038/nrm3699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wilfling F, Wang H, Haas JT et al (2013) Triacylglycerol synthesis enzymes mediate lipid droplet growth by relocalizing from the ER to lipid droplets. Dev Cell 24:384–399. https://doi.org/10.1016/j.devcel.2013.01.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Yang H, Galea A, Sytnyk V, Crossley M (2012) Controlling the size of lipid droplets: lipid and protein factors. Curr Opin Cell Biol 24:509–516. https://doi.org/10.1016/j.ceb.2012.05.012

    Article  CAS  PubMed  Google Scholar 

  69. Gao G, Chen F-J, Zhou L et al (2017) Control of lipid droplet fusion and growth by CIDE family proteins. Biochim Biophys Acta Mol Cell Biol Lipids 1862:1197–1204. https://doi.org/10.1016/j.bbalip.2017.06.009

    Article  CAS  PubMed  Google Scholar 

  70. Fromenty B, Pessayre D (1995) Inhibition of mitochondrial beta-oxidation as a mechanism of hepatotoxicity. Pharmacol Ther 67:101–154. https://doi.org/10.1016/0163-7258(95)00012-6

    Article  CAS  PubMed  Google Scholar 

  71. Begriche K, Massart J, Robin M-A et al (2011) Drug-induced toxicity on mitochondria and lipid metabolism: mechanistic diversity and deleterious consequences for the liver. J Hepatol 54:773–794. https://doi.org/10.1016/j.jhep.2010.11.006

    Article  CAS  PubMed  Google Scholar 

  72. Hegarty R, Deheragoda M, Fitzpatrick E, Dhawan A (2018) Paediatric fatty liver disease (PeFLD): all is not NAFLD—pathophysiological insights and approach to management. J Hepatol 68:1286–1299. https://doi.org/10.1016/j.jhep.2018.02.006

    Article  PubMed  Google Scholar 

  73. Tandra S, Yeh MM, Brunt EM et al (2011) Presence and significance of microvesicular steatosis in nonalcoholic fatty liver disease. J Hepatol 55:654–659. https://doi.org/10.1016/j.jhep.2010.11.021

    Article  PubMed  Google Scholar 

  74. Canbay A, Friedman S, Gores GJ (2004) Apoptosis: the nexus of liver injury and fibrosis. Hepatology 39:273–278. https://doi.org/10.1002/hep.20051

    Article  PubMed  Google Scholar 

  75. Zhan S-S, Jiang JX, Wu J et al (2006) Phagocytosis of apoptotic bodies by hepatic stellate cells induces NADPH oxidase and is associated with liver fibrosis in vivo. Hepatology 43:435–443. https://doi.org/10.1002/hep.21093

    Article  CAS  PubMed  Google Scholar 

  76. Chapple SJ, Siow RCM, Mann GE (2012) Crosstalk between Nrf2 and the proteasome: therapeutic potential of Nrf2 inducers in vascular disease and aging. Int J Biochem Cell Biol 44:1315–1320. https://doi.org/10.1016/j.biocel.2012.04.021

    Article  CAS  PubMed  Google Scholar 

  77. Jung T, Höhn A, Grune T (2014) The proteasome and the degradation of oxidized proteins: part II—protein oxidation and proteasomal degradation. Redox Biol 2:99–104. https://doi.org/10.1016/j.redox.2013.12.008

    Article  CAS  PubMed  Google Scholar 

  78. Osna NA, Haorah J, Krutik VM, Donohue TM (2004) Peroxynitrite alters the catalytic activity of rodent liver proteasome in vitro and in vivo. Hepatology 40:574–582. https://doi.org/10.1002/hep.20352

    Article  CAS  PubMed  Google Scholar 

  79. Donohue TM, Thomes PG (2014) Ethanol-induced oxidant stress modulates hepatic autophagy and proteasome activity. Redox Biol 3:29–39. https://doi.org/10.1016/j.redox.2014.10.006

    Article  CAS  PubMed  Google Scholar 

  80. Malhotra D, Portales-Casamar E, Singh A et al (2010) Global mapping of binding sites for Nrf2 identifies novel targets in cell survival response through ChIP-Seq profiling and network analysis. Nucleic Acids Res 38:5718–5734. https://doi.org/10.1093/nar/gkq212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Byrne CD, Targher G (2015) NAFLD: a multisystem disease. J Hepatol 62:S47–S64. https://doi.org/10.1016/j.jhep.2014.12.012

    Article  PubMed  Google Scholar 

  82. Than NN, Newsome PN (2015) A concise review of non-alcoholic fatty liver disease. Atherosclerosis 239:192–202. https://doi.org/10.1016/j.atherosclerosis.2015.01.001

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the Agence Nationale de la Recherche (ANR STEATOX project ANR-13-CESA-0009). Simon Bucher was a recipient of a joint fellowship from the Région Bretagne (ARED) and ANR. We are grateful to Alain Fautrel and Marine Seffals (histopathology platform H2P2), Laurence Bernard-Touami (animal care facility ARCHE), Stéphanie Dutertre (microscopy Rennes imaging center platform MRIC), all from the SFR Biosit UMS CNRS 3480-INSERM 018 SFR, for their excellent technical support. We also wish to thank Nicolas Collet (Laboratoire de Biochimie-Toxicologie, CHU de Rennes) for his skilled technical assistance for the serum analyses. We are grateful to INSERM (Institut National de la Recherche et de la Santé Médicale) for its constant financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernard Fromenty.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 144 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bucher, S., Begriche, K., Catheline, D. et al. Moderate chronic ethanol consumption exerts beneficial effects on nonalcoholic fatty liver in mice fed a high-fat diet: possible role of higher formation of triglycerides enriched in monounsaturated fatty acids. Eur J Nutr 59, 1619–1632 (2020). https://doi.org/10.1007/s00394-019-02017-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-019-02017-1

Keywords

Navigation