Skip to main content
Log in

Effects of a formula with a probiotic Bifidobacterium lactis Supplement on the gut microbiota of low birth weight infants

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

Low birth weight (LBW) infants have a less diverse gut microbiota, enriched in potential pathogens, which places them at high risk of systemic inflammation diseases. This study aimed to identify the differences in gut bacterial community structure between LBW infants who received probiotics and LBW infants who did not receive probiotics.

Methods

Forty-one infants were allocated to the non-probiotic group (N group) and 56 infants to the probiotic group (P group), according to whether the formula they received contained a probiotic Bifidobacterium lactis. Gut bacterial composition was identified with sequencing of the 16S rRNA gene in fecal samples collected at 14 days after birth.

Results

There was no significant difference between the alpha diversity of the two groups, while the beta diversity was significantly different (p < 0.05). Our results showed that Bifidobacterium and Lactobacillus (both p < 0.05) were enriched in the P group, while Veillonella, Dolosigranulum and Clostridium sensu stricto 1 (all p < 0.05) were enriched in the N group. Predicted metagenome function analysis revealed enhancement of fatty acids, peroxisome, starch, alanine, tyrosine and peroxisome pathways in the P group, and enhancement of plant pathogen, Salmonella and Helicobacter pylori infection pathways in the N group.

Conclusions

Probiotic supplement in formula may affect the composition, stability and function of LBW infants’ gut microbiota. LBW infants who receive probiotic intervention may benefit from gut microbiota that contains more beneficial bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Luyckx VA, Perico N, Somaschini M, Manfellotto D, Valensise H, Cetin I, Simeoni U, Allegaert K, Vikse BE, Steegers EA, Adu D, Montini G, Remuzzi G, Brenner BM (2017) A developmental approach to the prevention of hypertension and kidney disease: a report from the low birth weight and nephron number working group. Lancet 390(10092):424–428

    Article  PubMed  PubMed Central  Google Scholar 

  2. Wisgrill L, Wessely I, Spittler A, Forster-Waldl E, Berger A, Sadeghi K (2018) Human lactoferrin attenuates the proinflammatory response of neonatal monocyte-derived macrophages. Clin Exp Immunol 192(3):315–324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Moschopoulos C, Kratimenos P, Koutroulis I, Shah BV, Mowes A, Bhandari V (2018) The neurodevelopmental perspective of surgical necrotizing enterocolitis: the role of the Gut-Brain Axis. Mediators Inflamm 2018:7456857

    Article  PubMed  PubMed Central  Google Scholar 

  4. Horbar JD, Edwards EM, Greenberg LT, Morrow KA, Soll RF, Buus-Frank ME, Buzas JS (2017) Variation in performance of neonatal intensive care units in the United States. JAMA Pediatr 171(3):e164396

    Article  PubMed  Google Scholar 

  5. Brooks B, Olm MR, Firek BA, Baker R, Geller-McGrath D, Reimer SR, Soenjoyo KR, Yip JS, Dahan D, Thomas BC, Morowitz MJ, Banfield JF (2018) The developing premature infant gut microbiome is a major factor shaping the microbiome of neonatal intensive care unit rooms. Microbiome 6(1):112

    Article  PubMed  PubMed Central  Google Scholar 

  6. Hu H, Johani K, Gosbell IB, Jacombs AS, Almatroudi A, Whiteley GS, Deva AK, Jensen S, Vickery K (2015) Intensive care unit environmental surfaces are contaminated by multidrug-resistant bacteria in biofilms: combined results of conventional culture, pyrosequencing, scanning electron microscopy, and confocal laser microscopy. J Hosp Infect 91(1):35–44

    Article  CAS  PubMed  Google Scholar 

  7. La Rosa PS, Warner BB, Zhou Y, Weinstock GM, Sodergren E, Hall-Moore CM, Stevens HJ, Bennett WE, Shaikh N, Linneman LA, Hoffmann JA, Hamvas A, Deych E, Shands BA, Shannon WD, Tarr PI (2014) Patterned progression of bacterial populations in the premature infant gut. Proc Natl Acad Sci USA 111(34):12522–12527

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. Lin HC, Wu SF, Underwood M (2011) Necrotizing enterocolitis. N Engl J Med 364(19):1878–1879

    CAS  PubMed  Google Scholar 

  9. Tomova A, Husarova V, Lakatosova S, Bakos J, Vlkova B, Babinska K, Ostatnikova D (2015) Gastrointestinal microbiota in children with autism in Slovakia. Physiol Behav 138:179–187

    Article  CAS  PubMed  Google Scholar 

  10. Khashan AS, Kenny LC, Lundholm C, Kearney PM, Gong T, McNamee R, Almqvist C (2015) Gestational age and birth weight and the risk of childhood type 1 diabetes: a population-based cohort and sibling design study. Diabetes Care 38(12):2308–2315

    Article  CAS  PubMed  Google Scholar 

  11. Cong X, Henderson WA, Graf J, McGrath JM (2015) Early life experience and gut microbiome: the brain-gut-microbiota signaling system. Adv Neonatal Care 15(5):314–323

    Article  PubMed  PubMed Central  Google Scholar 

  12. Section on Breastfeeding (2012) Breastfeeding and the use of human milk. Pediatrics 129(3):e827–e841

    Article  Google Scholar 

  13. Wilson E, Edstedt Bonamy AK, Bonet M, Toome L, Rodrigues C, Howell EA, Cuttini M, Zeitlin J, EPICE Research Group (2018) Room for improvement in breast milk feeding after very preterm birth in Europe: Results from the EPICE cohort. Matern Child Nutr 14(1)

  14. Manzoni P, Rinaldi M, Cattani S, Pugni L, Romeo MG, Messner H, Stolfi I, Decembrino L, Laforgia N, Vagnarelli F, Memo L, Bordignon L, Saia OS, Maule M, Gallo E, Mostert M, Magnani C, Quercia M, Bollani L, Pedicino R, Renzullo L, Betta P, Mosca F, Ferrari F, Magaldi R, Stronati M, Farina D (2009) Bovine lactoferrin supplementation for prevention of late-onset sepsis in very low-birth-weight neonates: a randomized trial. JAMA 302(13):1421–1428

    Article  CAS  PubMed  Google Scholar 

  15. Braga TD, da Silva GA, de Lira PI, de Carvalho Lima M (2011) Efficacy of Bifidobacterium breve and Lactobacillus casei oral supplementation on necrotizing enterocolitis in very-low-birth-weight preterm infants: a double-blind, randomized, controlled trial. Am J Clin Nutr 93(1):81–86

    Article  CAS  PubMed  Google Scholar 

  16. Costeloe K, Hardy P, Juszczak E, Wilks M, Millar MR (2016) Bifidobacterium breve BBG-001 in very preterm infants: a randomised controlled phase 3 trial. Lancet 387(10019):649–660

    Article  PubMed  Google Scholar 

  17. Magoč T, Salzberg SL (2011) FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27(21):2957–2963

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26(19):2460–2461

    Article  CAS  PubMed  Google Scholar 

  19. Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73(16):5261–5267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cole JR, Wang Q, Cardenas E, Fish J, Chai B, Farris RJ, Kulam-Syed-Mohideen AS, McGarrell DM, Marsh T, Garrity GM, Tiedje JM (2009) The ribosomal database project: improved alignments and new tools for rrna analysis. Nucleic Acids Res 37(database issue):D141–D145

    Article  CAS  PubMed  Google Scholar 

  21. Kiserud T, Benachi A, Hecher K, Perez RG, Carvalho J, Piaggio G, Platt LD (2018) The World Health Organization fetal growth charts: concept, findings, interpretation, and application. Am J Obstet Gynecol 218(2S):S619–S629

    Article  PubMed  Google Scholar 

  22. Linsell L, Malouf R, Morris J, Kurinczuk JJ, Marlow N (2015) Prognostic factors for poor cognitive development in children born very preterm or with very low birth weight: a systematic review. JAMA Pediatr 169(12):1162–1172

    Article  PubMed  PubMed Central  Google Scholar 

  23. Sun J, Marwah G, Westgarth M, Buys N, Ellwood D, Gray PH (2017) Effects of probiotics on necrotizing enterocolitis, sepsis, intraventricular hemorrhage, mortality, length of hospital stay, and weight gain in very preterm infants: a meta-analysis. Adv Nutr 8(5):749–763

    Article  PubMed  PubMed Central  Google Scholar 

  24. Millar M, Seale J, Greenland M, Hardy P, Juszczak E, Wilks M, Panton N, Costeloe K, Wade WG (2017) The microbiome of infants recruited to a randomised placebo-controlled probiotic trial (PiPS Trial). EBioMedicine 20:255–262

    Article  PubMed  PubMed Central  Google Scholar 

  25. Bazanella M, Maier TV, Clavel T, Lagkouvardos I, Lucio M, Maldonado-Gòmez MX, Autran C, Walter J, Bode L, Schmitt-Kopplin P, Haller D (2017) Randomized controlled trial on the impact of early-life intervention with bifidobacteria on the healthy infant fecal microbiota and metabolome. Am J Clin Nutr 106(5):1274–1286

    CAS  PubMed  Google Scholar 

  26. Hays S, Jacquot A, Gauthier H, Kempf C, Beissel A, Pidoux O, Jumas-Bilak E, Decullier E, Lachambre E, Beck L, Cambonie G, Putet G, Claris O, Picaud JC (2016) Probiotics and growth in preterm infants: a randomized controlled trial, PREMAPRO study. Clin Nutr 35(4):802–811

    Article  PubMed  Google Scholar 

  27. Nandhini LP, Biswal N, Adhisivam B, Mandal J, Bhat BV, Mathai B (2016) Synbiotics for decreasing incidence of necrotizing enterocolitis among preterm neonates—a randomized controlled trial. J Matern Fetal Neonatal Med 29(5):821–825

    Article  CAS  PubMed  Google Scholar 

  28. Underwood MA, Salzman NH, Bennett SH, Barman M, Mills DA, Marcobal A, Tancredi DJ, Bevins CL, Sherman MP (2009) A randomized placebo-controlled comparison of 2 prebiotic/probiotic combinations in preterm infants: impact on weight gain, intestinal microbiota, and fecal short-chain fatty acids. J Pediatr Gastroenterol Nutr 48(2):216–225

    Article  PubMed  PubMed Central  Google Scholar 

  29. Ruiz-Moyano S, Totten SM, Garrido DA, Smilowitz JT, German JB, Lebrilla CB, Mills DA (2013) Variation in consumption of human milk oligosaccharides by infant gut-associated strains of Bifidobacterium breve. Appl Environ Microbiol 79(19):6040–6049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Poppleton DI, Duchateau M, Hourdel V, Matondo M, Flechsler J, Klingl A, Beloin C, Gribaldo S (2017) Outer membrane proteome of veillonella parvula: a diderm firmicute of the human microbiome. Front Microbiol 8:1215

    Article  PubMed  PubMed Central  Google Scholar 

  31. Wang H, Dai W, Feng X, Zhou Q, Wang H, Yang Y, Li S, Zheng Y (2018) Microbiota composition in upper respiratory tracts of healthy children in shenzhen, china, differed with respiratory sites and ages. Biomed Res Int 2018:6515670

    PubMed  PubMed Central  Google Scholar 

  32. Schäffler H, Breitrück A (2018) Clostridium difficile—from colonization to infection. Front Microbiol 9:646

    Article  PubMed  PubMed Central  Google Scholar 

  33. Leach ST, Lui K, Naing Z, Dowd SE, Mitchell HM, Day AS (2015) Multiple opportunistic pathogens, but not pre-existing inflammation, may be associated with necrotizing enterocolitis. Dig Dis Sci 60(12):3728–3734

    Article  PubMed  Google Scholar 

  34. Young GR, Smith DL, Embleton ND, Berrington JE, Schwalbe EC, Cummings SP, van der Gast CJ, Lanyon C (2017) Reducing viability bias in analysis of gut microbiota in preterm infants at risk of NEC and sepsis. Front Cell Infect Microbiol 7:237

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Esaiassen E, Hjerde E, Cavanagh JP, Pedersen T, Andresen JH, Rettedal SI, Støen R, Nakstad B, Willassen NP, Klingenberg C (2018) Effects of probiotic supplementation on the gut microbiota and antibiotic resistome development in preterm infants. Front Pediatr 6:347

    Article  PubMed  PubMed Central  Google Scholar 

  36. Jacquot A, Neveu D, Aujoulat F, Mercier G, Marchandin H, Jumas-Bilak E, Picaud JC (2011) Dynamics and clinical evolution of bacterial gut microflora in extremely premature patients. J Pediatr 158(3):390–396

    Article  PubMed  Google Scholar 

  37. Arboleya S, Binetti A, Salazar N, Fernández N, Solís G, Hernández-Barranco A, Margolles A, de Los Reyes-Gavilán CG, Gueimonde M (2012) Establishment and development of intestinal microbiota in preterm neonates. FEMS Microbiol Ecol 79(3):763–772

    Article  CAS  PubMed  Google Scholar 

  38. Zipfel C (2008) Pattern-recognition receptors in plant innate immunity. Curr Opin Immunol 20(1):10–16

    Article  CAS  PubMed  Google Scholar 

  39. Kelly D, Campbell JI, King TP, Grant G, Jansson EA, Coutts AG, Pettersson S, Conway S (2004) Commensal anaerobic gut bacteria attenuate inflammation by regulating nuclear-cytoplasmic shuttling of PPAR-gamma and RelA. Nat Immunol 5(1):104–112

    Article  CAS  PubMed  Google Scholar 

  40. Patel AL, Mutlu EA, Sun Y, Koenig L, Green S, Jakubowicz A, Mryan J, Engen P, Fogg L, Chen AL, Pombar X, Meier PP, Keshavarzian A (2016) Longitudinal survey of microbiota in hospitalized preterm very-low-birth-weight infants. J Pediatr Gastroenterol Nutr 62(2):292–303

    Article  PubMed  PubMed Central  Google Scholar 

  41. Huang W, Cheng Z, Lei S, Liu L, Lv X, Chen L, Wu M, Wang C, Tian B, Song Y (2018) Community composition, diversity, and metabolism of intestinal microbiota in cultivated European eel (Anguilla anguilla). Appl Microbiol Biotechnol 102(9):4143–4157

    Article  CAS  PubMed  Google Scholar 

  42. Quagliariello A, Del Chierico F, Russo A, Reddel S, Conte G, Lopetuso LR, Ianiro G, Dallapiccola B, Cardona F, Gasbarrini A, Putignani L (2018) Gut microbiota profiling and gut-brain crosstalk in children affected by pediatric acute-onset neuropsychiatric syndrome and pediatric autoimmune neuropsychiatric disorders associated with streptococcal infections. Front Microbiol 9:675

    Article  PubMed  PubMed Central  Google Scholar 

  43. DiFrancisco-Donoghue J, Rabin E, Lamberg EM, Werner WG (2014) Effects of tyrosine on Parkinson’s Disease: a randomized, double-blind, Placebo-Controlled Trial. Mov Disord Clin Pract 1(4):348–353

    Article  PubMed  PubMed Central  Google Scholar 

  44. Morgan XC, Tickle TL, Sokol H, Gevers D, Devaney KL, Ward DV, Reyes JA, Shah SA, LeLeiko N, Snapper SB, Bousvaros A, Korzenik J, Sands BE, Xavier RJ, Huttenhower C (2012) Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment. Genome Biol 13(9):R79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Brown CT, Davis-Richardson AG, Giongo A, Gano KA, Crabb DB, Mukherjee N, Casella G, Drew JC, Ilonen J, Knip M, Hyöty H, Veijola R, Simell T, Simell O, Neu J, Wasserfall CH, Schatz D, Atkinson MA, Triplett EW (2011) Gut microbiome metagenomics analysis suggests a functional model for the development of autoimmunity for type 1 diabetes. PLoS One 6(10):e25792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Pettengill M, Matute JD, Tresenriter M, Hibbert J, Burgner D, Richmond P, Millán JL, Ozonoff A, Strunk T, Currie A, Levy O (2017) Human alkaline phosphatase dephosphorylates microbial products and is elevated in preterm neonates with a history of late-onset sepsis. PLoS One 12(4):e0175936

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Beijing Natural Science Foundation (Grant No. S160003). The funding source had no role in the design and conduct of the study; collection, management, analysis and interpretation of the data; preparation, review or approval of the manuscript; and decision to submit the manuscript for publication.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Baoli Zhu, Jing Sun or Chenghong Yin.

Ethics declarations

Conflict of interest

The authors declare that they have no completing interests.

Ethical statement

The study was conducted in accordance with the Declaration of Helsinki, and the protocol was approved by the Ethics Committee of the Beijing Obstetrics and Gynecology Hospital (No. 2017-KY-027-01). Informed written consent was obtained from the parents of each infant.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chi, C., Xue, Y., Liu, R. et al. Effects of a formula with a probiotic Bifidobacterium lactis Supplement on the gut microbiota of low birth weight infants. Eur J Nutr 59, 1493–1503 (2020). https://doi.org/10.1007/s00394-019-02006-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-019-02006-4

Keywords

Navigation