Skip to main content

Advertisement

Log in

Effect of a trans fatty acid-enriched diet on mitochondrial, inflammatory, and oxidative stress parameters in the cortex and hippocampus of Wistar rats

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

Previously showed that dietary trans fatty acids (TFAs) may cause systemic inflammation and affect the central nervous system (CNS) in Wistar rats by increased levels of cytokines in the cerebrospinal fluid (CSF) and serum (Longhi et al. Eur J Nutr 56(3):1003–1016, 1). Here, we aimed to clarifying the impact of diets with different TFA concentrations on cerebral tissue, focusing on hippocampus and cortex and behavioral performance.

Methods

Wistar rats were fed either a normolipidic or a hyperlipidic diet for 90 days; diets had the same ingredients except for fat compositions, concentrations, and calories. We used lard in the cis fatty acid (CFA) group and PHSO in the TFA group. The intervention groups were as follows: (1) low lard (LL), (2) high lard (HL), (3) low partially hydrogenated soybean oil (LPHSO), and (4) high partially hydrogenated soybean oil (HPHSO). Mitochondrial parameters, tumor necrosis factor alpha (TNF-α), 2′7′-dichlorofluorescein (DCFH) levels in brain tissue, and open field task were analyzed.

Results

A worse brain tissue response was associated with oxidative stress in cortex and hippocampus as well as impaired inflammatory and mitochondrial parameters at both PHSO concentrations and there were alterations in the behavioral performance. In many analyses, there were no significant differences between the LPHSO and HPHSO diets.

Conclusions

Partially hydrogenated soybean oil impaired cortical mitochondrial parameters and altered inflammatory and oxidative stress responses, and the hyperlipidic treatment caused locomotor and exploratory effects, but no differences on weight gain in all treatments. These findings suggest that quality is more important than the quantity of fat consumed in terms of CFA and TFA diets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ALS:

Amyotrophic lateral sclerosis

AD:

Alzheimer’s disease

BBB:

Blood–brain barrier

CFA:

Cis fatty acid

CVD:

Cardiovascular disease

CNS:

Central nervous system

CSF:

Cerebrospinal fluid

DCF:

Dichlorofluorescein

DCFH:

2′7′-Dichlorofluorescein

FA:

Fatty acid

HDL:

High-density lipoprotein cholesterol

HFD:

High fat diet

HL:

High lard

HPHSO:

High partially hydrogenated soybean oil

IL1:

Interleukin 1

IL6:

Interleukin 6

IL10:

Interleukin 10

LDL:

Low-density lipoprotein cholesterol

LL:

Low lard

LPHSO:

Low partially hydrogenated soybean oil

MTG:

MitoTracker Green

MTR:

MitoTracker Red

OF:

Open field

OxLDL:

Oxidized low-density lipoprotein

PD:

Parkinson’s disease

PHSO:

Partially hydrogenated soybean oil

ROS:

Reactive oxygen species

SFA:

Saturated fatty acids

TFA:

Trans fatty acid

TNF-α:

Tumor necrosis factor alpha

References

  1. Longhi R, Almeida RF, Machado L, Duarte MM, Souza DG, Machado P et al (2017) Effect of a trans fatty acid-enriched diet on biochemical and inflammatory parameters in Wistar rats. Eur J Nutr 56(3):1003–1016

    Article  CAS  PubMed  Google Scholar 

  2. Berti V, Murray J, Davies M, Spector N, Tsui WH, Li Y et al (2015) Nutrient patterns and brain biomarkers of Alzheimer’s disease in cognitively normal individuals. J Nutr Health Aging 19:413–423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Barnard ND, Bunner AE, Agarwal U (2014) Saturated and trans fats and dementia: a systematic review. Neurobiol Aging 35(Suppl 2):S65–S73

    Article  CAS  PubMed  Google Scholar 

  4. Liu L, Chan C (2014) The role of inflammasome in Alzheimer’s disease. Ageing Res Rev 15:6–15

    Article  CAS  PubMed  Google Scholar 

  5. Bhardwaj S, Passi SJ, Misra A (2011) Overview of trans fatty acids: biochemistry and health effects. Diabetes Metab Syndr 5:161–164

    Article  PubMed  Google Scholar 

  6. Lichtenstein AH (2014) Dietary trans fatty acids and cardiovascular disease risk: past and present. Curr Atheroscler Rep 16:433

    Article  CAS  PubMed  Google Scholar 

  7. Trevizol F, Roversi K, Dias VT, Roversi K, Pase CS, Barcelos RC et al (2013) Influence of lifelong dietary fats on the brain fatty acids and amphetamine-induced behavioral responses in adult rat. Prog Neuropsychopharmacol Biol Psychiatry 45:215–222

    Article  CAS  PubMed  Google Scholar 

  8. Collison KS, Makhoul NJ, Inglis A, Al-Johi M, Zaidi MZ, Maqbool Z et al (2010) Dietary trans-fat combined with monosodium glutamate induces dyslipidemia and impairs spatial memory. Physiol Behav 99:334–342

    Article  CAS  PubMed  Google Scholar 

  9. Bryk D, Zapolska-Downar D, Malecki M, Hajdukiewicz K, Sitkiewicz D (2011) Trans fatty acids induce a proinflammatory response in endothelial cells through ROS-dependent nuclear factor-kappaB activation. J Physiol Pharmacol 62:229–238

    CAS  PubMed  Google Scholar 

  10. Spielman LJ, Little JP, Klegeris A (2014) Inflammation and insulin/IGF-1 resistance as the possible link between obesity and neurodegeneration. J Neuroimmunol 273:8–21

    Article  CAS  PubMed  Google Scholar 

  11. Golan H, Levav T, Mendelsohn A, Huleihel M (2004) Involvement of tumor necrosis factor alpha in hippocampal development and function. Cereb Cortex 14:97–105

    Article  CAS  PubMed  Google Scholar 

  12. Fasick V, Spengler RN, Samankan S, Nader ND, Ignatowski TA (2015) The hippocampus and TNF: common links between chronic pain and depression. Neurosci Biobehav Rev 53:139–159

    Article  CAS  PubMed  Google Scholar 

  13. Moreira PI, Zhu X, Wang X, Lee HG, Nunomura A, Petersen RB et al (2010) Mitochondria: a therapeutic target in neurodegeneration. Biochem Biophys Acta 1802:212–220

    CAS  PubMed  Google Scholar 

  14. Cho DH, Nakamura T, Lipton SA (2010) Mitochondrial dynamics in cell death and neurodegeneration. Cell Mol Life Sci 67:3435–3447

    Article  CAS  PubMed  Google Scholar 

  15. Caballero A, Ugidos A, Liu B, Oling D, Kvint K, Hao X et al (2011) Absence of mitochondrial translation control proteins extends life span by activating sirtuin-dependent silencing. Mol Cell 42:390–400

    Article  CAS  PubMed  Google Scholar 

  16. Ding WX, Yin XM (2012) Mitophagy: mechanisms, pathophysiological roles, and analysis. Biol Chem 393:547–564

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Corona JC, Duchen MR (2015) Impaired mitochondrial homeostasis and neurodegeneration: towards new therapeutic targets? J Bioenerg Biomembr 47:89–99

    Article  CAS  PubMed  Google Scholar 

  18. Jorgensen T, Grunnet N, Quistorff B (2015) One-year high fat diet affects muscle-but not brain mitochondria. J Cereb Blood Flow Metab 35:943–950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Martin CA, Visentainer JV, de Oliveira AN, de Oliveira CC, Matsushita M, de Souza NE (2008) Fatty acid contents of Brazilian soybean oils with emphasis ontransfatty acids. J Braz Chem Soc 19:117–122

    Article  CAS  Google Scholar 

  20. dos Santos B, Estadella D, Hachul AC, Okuda MH, Moreno MF, Oyama LM et al (2013) Effects of a diet enriched with polyunsaturated, saturated, or trans fatty acids on cytokine content in the liver, white adipose tissue, and skeletal muscle of adult mice. Mediat Inflamm 2013:594958

    Google Scholar 

  21. Weis SN, Pettenuzzo LF, Krolow R, Valentim LM, Mota CS, Dalmaz C et al (2012) Neonatal hypoxia-ischemia induces sex-related changes in rat brain mitochondria. Mitochondrion 12:271–279

    Article  CAS  PubMed  Google Scholar 

  22. Pendergrass W, Wolf N, Poot M (2004) Efficacy of MitoTracker Green and CMXrosamine to measure changes in mitochondrial membrane potentials in living cells and tissues. Cytom Part A 61:162–169

    Article  CAS  Google Scholar 

  23. Khanal G, Chung K, Solis-Wever X, Johnson B, Pappas D (2011) Ischemia/reperfusion injury of primary porcine cardiomyocytes in a low-shear microfluidic culture and analysis device. Analyst. 136:3519–3526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Keij JF, Bell-Prince C, Steinkamp JA (2000) Staining of mitochondrial membranes with 10-nonyl acridine orange, MitoFluor Green, and MitoTracker Green is affected by mitochondrial membrane potential altering drugs. Cytometry 39:203–210

    Article  CAS  PubMed  Google Scholar 

  25. Kalbacova M, Vrbacky M, Drahota Z, Melkova Z (2003) Comparison of the effect of mitochondrial inhibitors on mitochondrial membrane potential in two different cell lines using flow cytometry and spectrofluorometry. Cytom Part A 52:110–116

    Article  CAS  Google Scholar 

  26. Leira F, Vieites JM, Vieytes MR, Botana LM (2001) Apoptotic events induced by the phosphatase inhibitor okadaic acid in normal human lung fibroblasts. Toxicol In Vitro 15:199–208

    Article  CAS  PubMed  Google Scholar 

  27. Wang H, Joseph JA (1999) Quantifying cellular oxidative stress by dichlorofluorescein assay using microplate reader. Free Radic Biol Med 27:612–616

    Article  CAS  PubMed  Google Scholar 

  28. Quincozes-Santos A, Nardin P, de Souza DF, Gelain DP, Moreira JC, Latini A et al (2009) The janus face of resveratrol in astroglial cells. Neurotox Res 16:30–41

    Article  CAS  PubMed  Google Scholar 

  29. Almeida RF, Cereser VH Jr, Faraco RB, Bohmer AE, Souza DO, Ganzella M (2010) Systemic administration of GMP induces anxiolytic-like behavior in rats. Pharmacol Biochem Behav 96:306–311

    Article  CAS  PubMed  Google Scholar 

  30. Nasrallah CM, Horvath TL (2014) Mitochondrial dynamics in the central regulation of metabolism. Nat Rev Endocrinol 10:650–658

    Article  CAS  PubMed  Google Scholar 

  31. Lukyanova LD, Kirova YI (2015) Mitochondria-controlled signaling mechanisms of brain protection in hypoxia. Front Neurosci 9:320

    Article  PubMed  PubMed Central  Google Scholar 

  32. Hroudova J, Singh N, Fisar Z (2014) Mitochondrial dysfunctions in neurodegenerative diseases: relevance to Alzheimer’s disease. Biomed Res Int 2014:175062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chacko BK, Kramer PA, Ravi S, Benavides GA, Mitchell T, Dranka BP et al (2014) The Bioenergetic Health Index: a new concept in mitochondrial translational research. Clin Sci (Lond). 127:367–373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Perry SW, Norman JP, Barbieri J, Brown EB, Gelbard HA (2011) Mitochondrial membrane potential probes and the proton gradient: a practical usage guide. Biotechniques 50:98–115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lezi E, Swerdlow RH (2012) Mitochondria in neurodegeneration. Adv Exp Med Biol 942:269–286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chen H, Chomyn A, Chan DC (2005) Disruption of fusion results in mitochondrial heterogeneity and dysfunction. J Biol Chem 280:26185–26192

    Article  CAS  PubMed  Google Scholar 

  37. Cui L, Jeong H, Borovecki F, Parkhurst CN, Tanese N, Krainc D (2006) Transcriptional repression of PGC-1alpha by mutant huntingtin leads to mitochondrial dysfunction and neurodegeneration. Cell 127:59–69

    Article  CAS  PubMed  Google Scholar 

  38. Stetler RA, Leak RK, Yin W, Zhang L, Wang S, Gao Y et al (2012) Mitochondrial biogenesis contributes to ischemic neuroprotection afforded by LPS pre-conditioning. J Neurochem 123(Suppl 2):125–137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Woodcock T, Morganti-Kossmann MC (2013) The role of markers of inflammation in traumatic brain injury. Front Neurol 4:18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Barichello T, dos Santos I, Savi GD, Florentino AF, Silvestre C, Comim CM et al (2009) Tumor necrosis factor alpha (TNF-alpha) levels in the brain and cerebrospinal fluid after meningitis induced by Streptococcus pneumoniae. Neurosci Lett 467:217–219

    Article  CAS  PubMed  Google Scholar 

  41. Sriram K, O’Callaghan JP (2007) Divergent roles for tumor necrosis factor-alpha in the brain. J Neuroimmune Pharmacol 2:140–153

    Article  PubMed  Google Scholar 

  42. Fischer R, Maier O (2015) Interrelation of oxidative stress and inflammation in neurodegenerative disease: role of TNF. Oxid Med Cell Longev 2015:610813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bouayed J, Rammal H, Soulimani R (2009) Oxidative stress and anxiety: relationship and cellular pathways. Oxid Med Cell Longev 2:63–67

    Article  PubMed  PubMed Central  Google Scholar 

  44. Yan EB, Hellewell SC, Bellander BM, Agyapomaa DA, Morganti-Kossmann MC (2011) Post-traumatic hypoxia exacerbates neurological deficit, neuroinflammation and cerebral metabolism in rats with diffuse traumatic brain injury. J Neuroinflamm 8:147

    Article  CAS  Google Scholar 

  45. Mu Y, Gage FH (2011) Adult hippocampal neurogenesis and its role in Alzheimer’s disease. Mol Neurodegener 6:85

    Article  PubMed  PubMed Central  Google Scholar 

  46. Prut L, Belzung C (2003) The open field as a paradigm to measure the effects of drugs on anxiety-like behaviors: a review. Eur J Pharmacol 463:3–33

    Article  CAS  PubMed  Google Scholar 

  47. Koob AO, Cirillo J, Babbs CF (2006) A novel open field activity detector to determine spatial and temporal movement of laboratory animals after injury and disease. J Neurosci Methods 157:330–336

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS), Instituto Nacional de Ciência e Tecnologia para Excitoxicidade e Neuroproteção (INCTEN), and Universidade Federal do Rio Grande do Sul (UFRGS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Longhi.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Longhi, R., Almeida, R.F., Pettenuzzo, L.F. et al. Effect of a trans fatty acid-enriched diet on mitochondrial, inflammatory, and oxidative stress parameters in the cortex and hippocampus of Wistar rats. Eur J Nutr 57, 1913–1924 (2018). https://doi.org/10.1007/s00394-017-1474-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-017-1474-3

Keywords

Navigation